926 resultados para Recycling textiles
Resumo:
The use of sustainable solutions in construction is not just an option, but is increasingly becoming a need of the Society. Thus, nowadays the recycling of waste materials is a growing technology that needs to be continuously improved, namely by researching new solutions for waste valorisation and by increasing the amount of wastes reused. In the paving industry, the reuse of reclaimed asphalt (RA) is becoming common practice, but needs further research work. Thus, this study aims to increase the incorporation of RA and other waste materials in the production of recycled asphalt mixtures in order to improve their mechanical, environmental and economic performance. Recycled mixtures with 50% RA were analysed in this study, including: i) RA selection, preparation and characterization; ii) incorporation of other waste materials as binder additives or modifiers, like used motor oil (UMO) and waste high density polyethylene (HDPE); iii) production of different mixtures (without additives; with UMO; with UMO and HDPE) and comparison of their performance in order to assess the main advantages of each solution. With this study it was concluded that up to 7.5 % of UMO and 4.0 % of HDPE can be used in a new modified binder for asphalt mixtures with 50 % of RA, which have excellent properties concerning the rutting with WTS = 0.02 mm/103 cycles, the fatigue resistance with ε6 = 160.4, and water sensitivity with an ITSR of 81.9 %.
Resumo:
A new technique was developed for producing thin panels of a cement based material reinforced with relatively high content of steel fibres originated from the industry of tyre recycling. Flexural tests with notched and un-notched specimens were carried out to characterize the mechanical properties of this Fibre Reinforced Cement Composite (FRCC) and the results are presented and discussed. The values of the fracture mode I parameters of the developed FRCC were determined by performing inverse analysis with test results obtained in three point notched beam bending tests. To appraise the potentialities of these FRCC panels for the increase of the shear capacity of reinforced (RC) beams, numerical research was performed on the use of developed FRCC panel for shear reinforcement by applying the panels in the lateral faces of RC beams deficiently reinforced in shear.
Resumo:
Since concrete is the most widely utilized construction material, several solutions are currently being developed and investigated for enhancing the sustainability of cementitious materials. One of these solutions is based on producing Recycled Concrete Aggregates (RCA) from existing concrete members resulting by either industrial processes or demolitions of existing structures as a whole. Moreover, waste resulting from industrial processes other than the building construction (i.e., tire recycling, production of steel, powders resulting from other depuration processes) are also being considered as possible low-impact constituents for producing structural concrete and Fiber-Reinforced Cementitious Composites (FRCC). Furthermore, the use of natural fibers is another option for producing environmentally-friendly and cost-effective materials, depending on the local availability of raw materials. To promote the use of concretes partially composed of recycled constituents, their influence on the mechanical and durability performance of these concretes have to be deeply investigated and correlated. This was the main goal of the EnCoRe Project (www.encore-fp7.unisa.it), a EU-funded initiative, whose activities and main findings are summarized in this paper.
Resumo:
Nowadays, the concrete production sector is challenged by attempts to minimize the usage of raw materials and energy consumption, as well as by environmental concerns. Therefore, it is necessary to choose better options, e.g. new technologies or materials with improved life-cycle performance. One solution for using resources in an efficient manner is to close the materials' loop through the recycling of materials that result either from the end-of-life of products or from being the by-product of an industrial process. It is well known that the production of Portland cement, one of the materials most used in the construction sector, has a significant contribution to the environmental impacts, mainly related with carbon dioxide emission. Therefore, the study and utilization of by-products or wastes usable as cement replacement in concrete can supply more sustainable options, provided that these type of concrete produced has same durability and equivalent quality properties as standard concrete. This work studied the environmental benefits of incorporating different percentages of two types of fly ashes that can be used in concrete as cement replacement. These ashes are waste products of power and heat production sectors using coal or biomass as fuels. The results showed that both ashes provide a benefit for the concrete production both in terms of environmental impact minimization and a better environmental performance through an increase in cement replacement. It is possible to verify that the incorporation of fly ashes is a sustainable option for cement substitution and a possible path to improve the environmental performance of the concrete industry.
Resumo:
Nowadays, recycling has become a very important objective for the society in the scope of a closed loop product life cycle. In recent years, new recycling techniques have been developed in the area of road pavements that allow the incorporation of high percentages of reclaimed asphalt (RA) materials in recycled asphalt mixtures. The use of foamed bitumen for production of recycled asphalt mixtures is one of those techniques, which also allows the reduction of the mixing temperatures (warm mix technology). However, it is important to evaluate if this solution can maintain or improve the performance of the resulting mixtures. Thus, the main aim of the present study is to assess the performance of warm recycled asphalt mixtures incorporating foamed bitumen as the new binder and 50% RA, in comparison with a control mixture using conventional bitumen. Four mixtures have been produced with 50% RA, one of them at typical high mixing temperatures with a conventional bitumen (control mixture) and the other three with foamed bitumen at different production temperatures. These four mixtures were tested to evaluate their compactability and water sensitivity. The laboratory test results showed that the production of recycled mixtures with foamed bitumen can be reduced by 40ºC without changing the performance of the resulting mixtures.
Resumo:
The pavement recycling allows to reuse reclaimed asphalt pavement (RAP) or other waste materials in new asphalt mixtures for road construction or rehabilitation, thus re-ducing the use of virgin materials (aggregates and bitumen). Thus, the main aim of this study is to minimize the use of natural resources through the reuse of three waste materials: HDPE, mo-tor oil and RAP. Different amounts of waste motor oil and HDPE were added to an asphalt binder with 50% aged bitumen. The best solutions to produce the modified binders (4.5 to 5.0% HDPE and 10 % waste motor oil) performed as well as a conventional bitumen although they only used 35 % of virgin bitumen. Asphalt mixtures with 50 % RAP were produced with the selected modified binders, improving some characteristics in comparison with conventional asphalt mixtures. In conclusion, these wastes can revive in new asphalt mixtures.
Resumo:
This work compares the viscoelastic properties of an asphalt binder (70/100 pen) modified with different waste plastics and the mechanical properties of the resultant asphalt mixtures. Two different plastic wastes were used, namely recycled HDPE and EVA. Three different polymer modified binders were produced with these plastic wastes: i) 5% HDPE modified binder (P5); ii) 5% EVA modified binder (E5) and; iii) a modified binder with 4% of EVA and 2% HDPE (E4P2). Asphalt mixtures were produced with these modified binders, and their mechanical properties were analysed and compared with a conventional mixture produced with a 30/50 pen bitumen. It was possible to conclude that these recycled polymers are able to improve the mechanical performance of the asphalt mixtures used in road paving.
Resumo:
Today recovering urban waste requires effective management services, which usually imply sophisticated monitoring and analysis mechanisms. This is essential for the smooth running of the entire recycling process as well as for planning and control urban waste recovering. In this paper we present a business intelligence system especially designed and im- plemented to support regular decision-making tasks on urban waste management processes. The system provides a set of domain-oriented analytical tools for studying and characterizing poten- tial scenarios of collection processes of urban waste, as well as for supporting waste manage- ment in urban areas, allowing for the organization and optimization of collection services. In or- der to clarify the way the system was developed and the how it operates, particularly in process visualization and data analysis, we also present the organization model of the system, the ser- vices it disposes, and the interface platforms for exploring data.
Resumo:
Tese de Doutoramento em Ciências - Especialidade em Biologia
Resumo:
Dissertação de mestrado em Economia Industrial e de Empresa
Resumo:
Wool and silk are major protein fiber materials used by the textile industry. Fiber protein structure-function relationships are briefly described here, and the major enzymatic processing routes for textiles and other novel applications are deeply reviewed. Fiber biomodification is described here with various classes of enzymes such as protease, transglutaminase, tyrosinase, and laccase. It is expected that the reader will get a perspective on the research done as a basis for new applications in other areas such as cosmetics and pharma.
Resumo:
Printed electronics represent an alternative solution for the manufacturing of low-temperature and large area flexible electronics. The use of inkjet printing is showing major advantages when compared to other established printing technologies such as, gravure, screen or offset printing, allowing the reduction of manufacturing costs due to its efficient material usage and the direct-writing approach without requirement of any masks. However, several technological restrictions for printed electronics can hinder its application potential, e.g. the device stability under atmospheric or even more stringent conditions. Here, we study the influence of specific mechanical, chemical, and temperature treatments usually appearing in manufacturing processes for textiles on the electrical performance of all-inkjet-printed organic thin-film transistors (OTFTs). Therefore, OTFTs where manufactured with silver electrodes, a UV curable dielectric, and 6,13-bis(triisopropylsilylethynyl) pentance (TIPS-pentacene) as the active semiconductor layer. All the layers were deposited using inkjet printing. After electrical characterization of the printed OTFTs, a simple encapsulation method was applied followed by the degradation study allowing a comparison of the electrical performance of treated and not treated OTFTs. Industrial calendering, dyeing, washing and stentering were selected as typical textile processes and treatment methods for the printed OTFTs. It is shown that the all-inkjet-printed OTFTs fabricated in this work are functional after their submission to the textiles processes but with degradation in the electrical performance, exhibiting higher degradation in the OTFTs with shorter channel lengths (L=10 μm).
Resumo:
The employ of vegetal fibers for textiles and composites represents a great potential in economic and social sustainable development. Some Malvaceae species are considered tropical cosmopolitans, such as from Sida genus. Several species of this genus provide excellent textile bast fibers, which are very similar in qualities to the jute textile fiber. The objective of the present study is present the physicochemical characterization of six Brazilian vegetal fibers: Sida rhombifolia L.; Sida carpinifolia L. f.; Sidastrum paniculatum (L.) Fryxell; Sida cordifolia L.; Malvastrum coromandelianum (L.) Gurck; Wissadula subpeltata (Kuntze) R.E.Fries. Respectively the two first species are from Brazilian Atlantic Forest biome and the four remaining from Brazilian Cerrado biome, despite of present in other regions of the planet. The stems of these species were retted in water at 37oC for 20 days. The fibers were tested in order to determine tensile rupture strength, tenacity, elongation, Young’s modulus, cross microscopic structure, Scanning Electronic Microscopy (SEM), regain, combustion, acid, alkali, organic solvent and cellulase effects, pH of the aqueous extract, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). The obtained values were compared with those from fibers of recognized applicability in the textile industry including hemp. The results are promising in terms of their employment in thermoset and thermoplastic medium resistance composites.
Resumo:
Recent advances in computation allow for the integration of design and simulation of highly interrelated systems, such as hybrids of structural membranes and bending active elements. The engaged complexities of forces and logistics can be mediated through the development of materials with project specific properties and detailing. CNC knitting with high tenacity yarn enables this practice and offers an alternative to current woven membranes. The design and fabrication of an 8m high fabric tower through an interdisciplinary team of architects, structural and textile engineers, allowed to investigate means to design, specify, make and test CNC knit as material for hybrid structures in architectural scale. This paper shares the developed process, identifies challenges, potentials and future work.
Resumo:
O conceito de qualidade de vida surge pela primeira vez em 1920, através do economista inglês Arthur Cecil Pigou, que utiliza este termo para descrever o impacto governamental sobre a vida das pessoas mais desfavorecidas. Com a instalação de uma era industrializada e com o fim da 2º Guerra Mundial, a sociedade mudou de paradigma e iniciou uma procura incessante de formas para melhorar a sua qualidade de vida. Este conceito desenvolve-se juntamente com o desenvolvimento do conceito de educação, saúde, habitação, transporte, trabalho e lazer, bem como indicadores do aumento da esperança de vida, a diminuição da mortalidade infantil e dos níveis de poluição. O avanço da tecnologia teve um papel fundamental para a evolução desses conceitos, bem como o Design na procura de soluções para aplicação dessas mesmas tecnologias. No caso concreto da indústria tèxtil, a tendência é o desenvolvimento de têxteis inteligentes envolvendo a engenharia electrónica no seu processo de conceptualização e de fabrico. A chamada tecnologia wearable abre novos horizontes para a criação de soluções inovadoras, abrindo novos nichos de mercado com elevado valor acrescentado. Existem atualmente vários produtos no mercado cuja funcionalidade e utilidade lhes conferiu um estatuto imutável ao longo dos anos, onde a evolução não avançou na tendência atual. Esse é o caso dos tecidos estreitos, cuja funcionalidade poderá adquirir novas capacidades e ser utilizada em diferentes componentes têxteis nas mais variadas áreas. Essas capacidades poderão ser acrescentadas pela incorporação de materiais com luminosidade (Led’s e L-Wire) nas suas estruturas. Neste estudo realizado o design de produtos com novas funcionalidades, adaptando as tecnologias até agora desenvolvidas em novas soluções e/ou novas recriações de produto.