960 resultados para Recurrent abortion
Resumo:
As is well known, the Convergence Theorem for the Recurrent Neural Networks, is based in Lyapunov ́s second method, which states that associated to any one given net state, there always exist a real number, in other words an element of the one dimensional Euclidean Space R, in such a way that when the state of the net changes then its associated real number decreases. In this paper we will introduce the two dimensional Euclidean space R2, as the space associated to the net, and we will define a pair of real numbers ( x, y ) , associated to any one given state of the net. We will prove that when the net change its state, then the product x ⋅ y will decrease. All the states whose projection over the energy field are placed on the same hyperbolic surface, will be considered as points with the same energy level. On the other hand we will prove that if the states are classified attended to their distances to the zero vector, only one pattern in each one of the different classes may be at the same energy level. The retrieving procedure is analyzed trough the projection of the states on that plane. The geometrical properties of the synaptic matrix W may be used for classifying the n-dimensional state- vector space in n classes. A pattern to be recognized is seen as a point belonging to one of these classes, and depending on the class the pattern to be retrieved belongs, different weight parameters are used. The capacity of the net is improved and the spurious states are reduced. In order to clarify and corroborate the theoretical results, together with the formal theory, an application is presented.
Resumo:
A unique case of a collegiate athlete who suffered an anterior cruciate ligament injury leading to the formation of a synovial cyst is described. The cyst, localized over the tibial tunnel, resulted from irritation caused by the removal of interference screws.
Resumo:
Variable Speed Limit (VSL) strategies identify and disseminate dynamic speed limits that are determined to be appropriate based on prevailing traffic conditions, road surface conditions, and weather conditions. This dissertation develops and evaluates a shockwave-based VSL system that uses a heuristic switching logic-based controller with specified thresholds of prevailing traffic flow conditions. The system aims to improve operations and mobility at critical bottlenecks. Before traffic breakdown occurrence, the proposed VSL’s goal is to prevent or postpone breakdown by decreasing the inflow and achieving uniform distribution in speed and flow. After breakdown occurrence, the VSL system aims to dampen traffic congestion by reducing the inflow traffic to the congested area and increasing the bottleneck capacity by deactivating the VSL at the head of the congested area. The shockwave-based VSL system pushes the VSL location upstream as the congested area propagates upstream. In addition to testing the system using infrastructure detector-based data, this dissertation investigates the use of Connected Vehicle trajectory data as input to the shockwave-based VSL system performance. Since the field Connected Vehicle data are not available, as part of this research, Vehicle-to-Infrastructure communication is modeled in the microscopic simulation to obtain individual vehicle trajectories. In this system, wavelet transform is used to analyze aggregated individual vehicles’ speed data to determine the locations of congestion. The currently recommended calibration procedures of simulation models are generally based on the capacity, volume and system-performance values and do not specifically examine traffic breakdown characteristics. However, since the proposed VSL strategies are countermeasures to the impacts of breakdown conditions, considering breakdown characteristics in the calibration procedure is important to have a reliable assessment. Several enhancements were proposed in this study to account for the breakdown characteristics at bottleneck locations in the calibration process. In this dissertation, performance of shockwave-based VSL is compared to VSL systems with different fixed VSL message sign locations utilizing the calibrated microscopic model. The results show that shockwave-based VSL outperforms fixed-location VSL systems, and it can considerably decrease the maximum back of queue and duration of breakdown while increasing the average speed during breakdown.
Resumo:
We study the algebraic and topological genericity of certain subsets of locally recurrent functions, obtaining (among other results) algebrability and spaceability within these classes.
Resumo:
Peer reviewed
Resumo:
We study the algebraic and topological genericity of certain subsets of locally recurrent functions, obtaining (among other results) algebrability and spaceability within these classes.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.