840 resultados para Readings and recitations.
Resumo:
Snow height was measured by the Snow Depth Buoy 2014S13, an autonomous platform, drifting on Arctic sea ice, deployed during the CryoVEx2014 field campaign. The resulting time series describes the evolution of snow height as a function of place and time between 2014-03-30 and 2014-07-20 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on multi year ice. In addition to snow height, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow height occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow height may still be used for sea ice drift analyses. Note: This data set contains only relative changes in snow height, because no initial readings of absolute snow height are available.
Resumo:
Snow height was measured by the Snow Depth Buoy 2013S1, an autonomous platform, installed close to Neumayer III Base, Antarctic during Antarctic Fast Ice Network 2013 (AFIN 2013). The resulting time series describes the evolution of snow height as a function of place and time between 2013-02-11 and 2013-04-29 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on the ice shelf. In addition to snow height, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow height occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow height may still be used for sea ice drift analyses. Note: This data set contains only relative changes in snow height, because no initial readings of absolute snow height are available.
Resumo:
Snow height was measured by the Snow Depth Buoy 2013S4, an autonomous platform, installed on land-fast sea ice off Barrow, Alaska during SIZONet 2013. The resulting time series describes the evolution of snow height as a function of place and time between 2013-04-09 and 2013-06-28 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on land-fast sea ice. In addition to snow height, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow height occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow height may still be used for sea ice drift analyses. Note: This data set contains only relative changes in snow height, because no initial readings of absolute snow height are available.
Resumo:
The dataset is composed of 61 samples from 15 stations. The phytoplankton samples were collected by 5l Niskin bottles attached to the CTD system. The sampling depths were selected according to the CTD profile and the in situ fluorometer readings: surface, temperature, salinity and fluorescence gradients and 1 m above the bottom. At some stations phytoplankton net samples (20 µm mesh-size) were collected to assist species biodiversity examination. The samples (1l sea water) were preserved in 4% buffered to pH 8-8.2 with disodiumtetraborate formaldehyde solution and stored in plastic containers. On board at each station few live samples were qualitatively examined under microscope for preliminary analysis of taxonomic composition and dominant species. Taxon-specific phytoplankton abundance were concentrated down to 50 cm**3 by slow decantation after storage for 20 days in a cool and dark place. The species identification was done under light microscope OLIMPUS-BS41 connected to a video-interactive image analysis system at magnification of the ocular 10X and objective - 40X. A Sedgwick-Rafter camera (1ml) was used for counting. 400 specimen were counted for each sample, while rare and large species were checked in the whole sample (Manual of phytoplankton, 2005). Species identification was mainly after Carmelo T. (1997) and Fukuyo, Y. (2000). The cell biovolume of the taxon-specific phytoplankton biomass was determined based on morpho-metric measurement of phytoplankton units and the corresponding geometric shapes as described in detail in (Edier, 1979).
Resumo:
In the last 20 years directed shark and ray fishery has increased alarmingly everywhere in the world. For most species though, no data on growth rate, mortality, fecundity and other life history aspects exist as of now and management of the fishery is therefore insufficient. Also there still exist methodological difficulties in the age determination of elasmobranchs fishes, a fact which complicates the investigation of growth parameters. This study tried to identify the best ageing methods and estimate growth parameters for ten skate species of the genus Bathyraja, all occurring in the southwest Atlantic in depths of 50m and more. 720 samples were collected on board of argentine research vessels in between 2003 and 2005. Crystal violet and a new staining method using potassium permanganate, both applied on sagittal sections of vertebral centra, proved to be most effective in enhancing the banding pattern in most of the species. Thorns were also tested and readings were consistent with the ones made on vertebral sections. Growth parameters could be derived for six species and for the other four estimates could be made. Growth rate as well as infinite length varied between species, with those attaining bigger sizes having lower growth rates. No latitudinal differences in growth rate could be detected but a comparison with samples from other studies showed that total lengths were always reported to be higher around the Malvinas Islands.
Resumo:
The dataset is composed of 41 samples from 10 stations. The phytoplankton samples were collected by 5l Niskin bottles attached to the CTD system. The sampling depths were selected according to the CTD profile and the in situ fluorometer readings: surface, temperature, salinity and fluorescence gradients and 1 m above the bottom. At some stations phytoplankton net samples (20 µm mesh-size) were collected to assist species biodiversity examination. The samples (1l sea water) were preserved in 4% buffered to pH 8-8.2 with disodiumtetraborate formaldehyde solution and stored in plastic containers. On board at each station few live samples were qualitatively examined under microscope for preliminary analysis of taxonomic composition and dominant species. The taxon-specific phytoplankton abundance samples were concentrated down to 50 cm**3 by slow decantation after storage for 20 days in a cool and dark place. The species identification was done under light microscope OLIMPUS-BS41 connected to a video-interactive image analysis system at magnification of the ocular 10X and objective - 40X. A Sedgwick-Rafter camera (1ml) was used for counting. 400 specimen were counted for each sample, while rare and large species were checked in the whole sample (Manual of phytoplankton, 2005). Species identification was mainly after Carmelo T. (1997) and Fukuyo, Y. (2000). Total phytoplankton abundance was calculated as sum of taxon-specific abundances. Total phytoplankton biomass was calculated as sum of taxon-specific biomasses. The cell biovolume was determined based on morpho-metric measurement of phytoplankton units and the corresponding geometric shapes as described in detail in (Edier, 1979).
Resumo:
Snow height was measured by the Snow Depth Buoy 2014S15, an autonomous platform, drifting on Arctic sea ice, deployed during POLARSTERN cruise ARK-XXVIII/4 (PS87). The resulting time series describes the evolution of snow depth as a function of place and time between 2014-08-29 and 2014-12-31 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). The buoy was installed on multi year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Records without any snow depth may still be used for sea ice drift analyses. Note: This data set contains only relative changes in snow depth, because no initial readings of absolute snow depth are available.
Resumo:
Snow height was measured by the Snow Depth Buoy 2014S17, an autonomous platform, drifting on Antarctic sea ice, deployed during POLARSTERN cruise ANT-XXX/2 (PS89). The resulting time series describes the evolution of snow depth as a function of place and time between 2014-12-20 and 2015-02-01 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on first year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). In this data set, diurnal variations occur in the data set, although the sonic readings were compensated for temperature changes. Records without any snow depth may still be used for sea ice drift analyses.
Resumo:
Snow height was measured by the Snow Depth Buoy 2014S24, an autonomous platform, installed close to Neumayer III Base, Antarctic during Antarctic Fast Ice Network 2014 (AFIN 2014). The resulting time series describes the evolution of snow depth as a function of place and time between 2014-03-07 and 2014-05-16 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on the ice shelf. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and ice surface temperature were measured. Negative values of snow depth occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses. Note: This data set contains only relative changes in snow depth, because no initial readings of absolute snow depth are available.
Resumo:
production, during the summer of 2010. This farm is integrated at the Spanish research network for the sugar beet development (AIMCRA) which regarding irrigation, focuses on maximizing water saving and cost reduction. According to AIMCRA 0 s perspective for promoting irrigation best practices, it is essential to understand soil response to irrigation i.e. maximum irrigation length for each soil infiltration capacity. The Use of Humidity Sensors provides foundations to address soil 0 s behavior at the irrigation events and, therefore, to establish the boundaries regarding irrigation length and irrigation interval. In order to understand to what extent farmer 0 s performance at Tordesillas farm could have been potentially improved, this study aims to address suitable irrigation length and intervals for the given soil properties and evapotranspiration rates. In this sense, several humidity sensors were installed: (1) A Frequency Domain Reflectometry (FDR) EnviroScan Probe taking readings at 10, 20, 40 and 60cm depth and (2) different Time Domain Reflectometry (TDR) Echo 2 and Cr200 probes buried in a 50cm x 30cm x 50cm pit and placed along the walls at 10, 20, 30 and 40 cm depth. Moreover, in order to define soil properties, a textural analysis at the Tordesillas Farm was conducted. Also, data from the Tordesillas meteorological station was utilized.
Resumo:
The evolution of water content on a sandy soil during the sprinkler irrigation campaign, in the summer of 2010, of a field of sugar beet crop located at Valladolid (Spain) is assessed by a capacitive FDR (Frequency Domain Reflectometry) EnviroScan. This field is one of the experimental sites of the Spanish research center for the sugar beet development (AIMCRA). The objective of the work focus on monitoring the soil water content evolution of consecutive irrigations during the second two weeks of July (from the 12th to the 28th). These measurements will be used to simulate water movement by means of Hydrus-2D. The water probe logged water content readings (m3/m3) at 10, 20, 40 and 60 cm depth every 30 minutes. The probe was placed between two rows in one of the typical 12 x 15 m sprinkler irrigation framework. Furthermore, a texture analysis at the soil profile was also conducted. The irrigation frequency in this farm was set by the own personal farmer 0 s criteria that aiming to minimizing electricity pumping costs, used to irrigate at night and during the weekend i.e. longer irrigation frequency than expected. However, the high evapotranspiration rates and the weekly sugar beet water consumption—up to 50mm/week—clearly determined the need for lower this frequency. Moreover, farmer used to irrigate for six or five hours whilst results from the EnviroScan probe showed the soil profile reaching saturation point after the first three hours. It must be noted that AIMCRA provides to his members with a SMS service regarding weekly sugar beet water requirement; from the use of different meteorological stations and evapotranspiration pans, farmers have an idea of the weekly irrigation needs. Nevertheless, it is the farmer 0 s decision to decide how to irrigate. Thus, in order to minimize water stress and pumping costs, a suitable irrigation time and irrigation frequency was modeled with Hydrus-2D. Results for the period above mentioned showed values of water content ranging from 35 and 30 (m3/m3) for the first 10 and 20cm profile depth (two hours after irrigation) to the minimum 14 and 13 (m3/m3) ( two hours before irrigation). For the 40 and 60 cm profile depth, water content moves steadily across the dates: The greater the root activity the greater the water content variation. According to the results in the EnviroScan probe and the modeling in Hydrus-2D, shorter frequencies and irrigation times are suggested.
Resumo:
The evapotranspiration (ET c) of a table grape vineyard (Vitis vinifera, cv. Red Globe) trained to a gable trellis under netting and black plastic mulching was determined under semiarid conditions in the central Ebro River Valley during 2007 and 2008. The netting was made of high-density polyethylene (pores of 12 mm2) and was placed just above the ground canopy about 2.2 m above soil surface. Black plastic mulching was used to minimize soil evaporation. The surface renewal method was used to obtain values of sensible heat flux (H) from high-frequency temperature readings. Later, latent heat flux (LE) values were obtained by solving the energy balance equation. For the May–October period, seasonal ET c was about 843 mm in 2007 and 787 mm in 2008. The experimental weekly crop coefficients (K cexp) fluctuated between 0.64 and 1.2. These values represent crop coefficients adjusted to take into account the reduction in ET c caused by the netting and the black plastic mulching. Average K cexp values during mid- and end-season stages were 0.79 and 0.98, respectively. End-season K cexp was higher due to combination of factors related to the precipitation and low ET o conditions that are typical in this region during fall. Estimated crop coefficients using the Allen et al. (1998) approach adjusting for the effects of the netting and black plastic mulching (K cFAO) showed a good agreement with the experimental K cexp values.
Resumo:
The evapotranspiration (ETc) of sprinkler-irrigated rice was determined for the semiarid conditions of NE Spain during 2001, 2002 and 2003. The surface renewal method, after calibration against the eddy covariance method, was used to obtain values of sensible heat flux (H) from high-frequency temperature readings. Latent heat flux values were obtained by solving the energy balance equation. Finally, lysimeter measurements were used to validate the evapotranspiration values obtained with the surface renewal method. Seasonal rice evapotranspiration was about 750–800 mm. Average daily ETc for mid-season (from 90 to 130 days after sowing) was 5.1, 4.5 and 6.1 mm day−1 for 2001, 2002 and 2003, respectively. The experimental weekly crop coefficients fluctuated in the range of 0.83–1.20 for 2001, 0.81–1.03 for 2002 and 0.84–1.15 for 2003. The total growing season was about 150–160 days. In average, the crop coefficients for the initial (Kcini), mid-season (Kcmid) and late-season stages (Kcend) were 0.92, 1.06 and 1.03, respectively, the length of these stages being about 55, 45 and 25 days, respectively.
Resumo:
Erosion potential and the effects of tillage can be evaluated from quantitative descriptions of soil surface roughness. The present study therefore aimed to fill the need for a reliable, low-cost and convenient method to measure that parameter. Based on the interpretation of micro-topographic shadows, this new procedure is primarily designed for use in the field after tillage. The principle underlying shadow analysis is the direct relationship between soil surface roughness and the shadows cast by soil structures under fixed sunlight conditions. The results obtained with this method were compared to the statistical indexes used to interpret field readings recorded by a pin meter. The tests were conducted on 4-m2 sandy loam and sandy clay loam plots divided into 1-m2 subplots tilled with three different tools: chisel, tiller and roller. The highly significant correlation between the statistical indexes and shadow analysis results obtained in the laboratory as well as in the field for all the soil?tool combinations proved that both variability (CV) and dispersion (SD) are accommodated by the new method. This procedure simplifies the interpretation of soil surface roughness and shortens the time involved in field operations by a factor ranging from 12 to 20.
Resumo:
Canopy characterization is essential for describing the interaction of a crop with its environment. The goal of this work was to determine the relationship between leaf area index (LAI) and ground cover (GC) in a grass, a legume and a crucifer crop, and to assess the feasibility of using these relationships as well as LAI-2000 readings to estimate LAI. Twelve plots were sown with either barley (Hordeum vulgare L.), vetch (Vicia sativa L.), or rape (Brassica napus L.). On 10 sampling dates the LAI (both direct and LAI-2000 estimations), fraction intercepted of photosynthetically active radiation (FIPAR) and GC were measured. Linear and quadratic models fitted to the relationship between the GC and LAI for all of the crops, but they reached a plateau in the grass when the LAI mayor que 4. Before reaching full cover, the slope of the linear relationship between both variables was within the range of 0.025 to 0.030. The LAI-2000 readings were linearly correlated with the LAI but they tended to overestimation. Corrections based on the clumping effect reduced the root mean square error of the estimated LAI from the LAI-2000 readings from 1.2 to less than 0.50 for the crucifer and the legume, but were not effective for barley.