956 resultados para Raman,
Resumo:
Objectives. The role of inorganic content on physical properties of resin composites is well known. However, its influence on polymerization stress development has not been established. The aim of this investigation was to evaluate the influence of inorganic fraction on polymerization stress and its determinants, namely, volumetric shrinkage, elastic modulus and degree of conversion. Methods. Eight experimental composites containing 1:1 BisGMA (bisphenylglycidyl dimethacrylate): TEGDMA (triethylene glycol dimethacrylate) (in mol) and barium glass at increasing concentrations from 25 to 60 vol.% (5% increments) were tested. Stress was determined in a universal test machine using acrylic as bonding substrate. Nominal polymerization stress was obtained diving the maximum load by the cross-surface area. Shrinkage was measured using a water picnometer. Elastic modulus was obtained by three-point flexural test. Degree of conversion was determined by FT-Raman spectroscopy. Results. Polymerization stress and shrinkage showed inverse relationships with filler content (R(2) = 0.965 and R(2) = 0.966, respectively). Elastic modulus presented a direct correlation with inorganic content (R(2) = 0.984). Degree of conversion did not vary significantly. Polymerization stress showed a strong direct correlation with shrinkage (R(2) = 0.982) and inverse with elastic modulus (R(2) = 0.966). Significance. High inorganic contents were associated with low polymerization stress values, which can be explained by the reduced volumetric shrinkage presented by heavily filled composites. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. The aim of this study was to evaluate the influence of monomer content on fracture toughness (K(Ic)) before and after ethanol solution storage, flexural properties and degree of conversion (DC) of bisphenol A glycidyl methacrylate (Bis-GMA) co-polymers. Methods. Five formulations were tested, containing Bis-GMA (B) combined with TEGDMA (T), UDMA (U) or Bis-EMA (E), as follows (in mol%): 30B:70T; 30B:35T:35U; 30B:70U; 30B:35T:35E; 30B:70E. Bimodal filler was introduced at 80 wt%. Single-edge notched beams for fracture toughness (FT, 25 mm x 5 mm x 2.5 mm, a/w = 0.5, n = 20) and 10 mm x 2 mm x 1 mm beams for flexural strength (FS) and modulus (FM) determination (10 mm x 2 mm x 1 mm, n = 10) were built and then stored in distilled water for 24 h at 37 degrees C. All FS/FM beams and half of the FT specimens were immediately submitted to three-point bending test. The remaining FT specimens were stored in a 75%ethanol/25%water (v/v) solution for 3 months prior to testing. DC was determined with FT-Raman spectroscopy in fragments of both FT and FS/FM specimens at 24 h. Data were submitted to one-way ANOVA/Tukey test (alpha = 5%). Results. The 30B:70T composite presented the highest K(Ic) value (in MPa m(1/2)) at 24 h (1.3 +/- 0.4), statistically similar to 30B:35T:35U and 30B:70U, while 30B:70E presented the lowest value (0.5 +/- 0.1). After ethanol storage, reductions in K(Ic) ranged from 33 to 72%. The 30B:70E material presented the lowest reduction in FT and 30B:70U, the highest. DC was similar among groups (69-73%), except for 30B:70U (52 +/- 4%, p < 0.001). 30B:70U and 30B:35T:35U presented the highest FS (125 +/- 21 and 122 +/- 14 MPa, respectively), statistically different from 30B:70T or 30B:70E (92 +/- 20 and 94 +/- 16 MPa, respectively). Composites containing UDMA or Bis-EMA associated with Bis-GMA presented similar FM, statistically lower than 30B:35T:35U. Significance. Composites formulated with Bis-GMA:TEGDMA:UDMA presented the best compromise between conversion and mechanical properties. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Different monomer structures lead to different physical and mechanical properties for both the monomers and the polymers. The objective of this study was to determine the influence of the bisphenylglycidyl dimethacrylate (BisGMA) concentration (33, 50 or 66 mol%) and the co-monomer content [triethylene glycol dimethacrylate (TEGDMA), ethoxylated bisphenol-A dimethacrylate (BisEMA), or both in equal parts] on viscosity (eta), degree of conversion (DC), and flexural strength (FS). eta was measured using a viscometer, DC was obtained by Fourier transfer Raman (FT-Raman) spectroscopy, and FS was determined by three-point bending. At 50 and 66% BisGMA, increases in eta were observed following the partial and total substitution of TEGDMA by BisEMA. For 33% BisGMA, eta increased significantly only when no TEGDMA was present. The DC was influenced by BisGMA content and co-monomer type. Mixtures containing 66% BisGMA showed a lower DC compared with mixtures containing other concentrations of BisGMA. The BisEMA mixtures had a lower DC compared with the TEGDMA mixtures. The FS was influenced by co-monomer content only. BisEMA mixtures presented a statistically lower FS, followed by TEGDMA + BisEMA mixtures, and then by TEGDMA mixtures. Partial or total replacement of TEGDMA by BisEMA increased eta, which was associated with the observed decreases in DC and FS. Although the BisGMA content influenced the DC, it did not affect the FS results.
Resumo:
Purpose: To evaluate the effect of light guide distance and the different photoactivation methods on the degree of conversion (DC) and microleakage of a composite. Methods and Materials: Three photoactivation protocols (600mW/cm(2) x 40 seconds; 400 mW/cm(2) x 60 seconds or 200 mW/cm(2) x 20 seconds, followed by 500 mW/cm(2) X 40 seconds) and three distances from the light source (0, 3 or 7 mm) were tested. Cylindrical specimens (5 nun diameter; 2 mm tall; n=3) were prepared for the DC test (FT-Raman). Class V cavities were made in 90 bovine incisors to conduct the microleakage test. The specimens were conditioned for 15 seconds with phosphoric acid (37%), followed by application of the adhesive system Prime & Bond NT (Dentsply/Caulk). The preparations were restored in bulk. The specimens were stored for 24 hours in distilled water (37 degrees C) before being submitted to the silvernitrate microleakage protocol. The restorations were sectioned and analyzed under 25x magnification. Results: Statistical analyses (two-way ANOVAs and Tukey test, alpha=0.05) found significance only for the factor distance (p=0.015) at the top of the composite for the DC test. Conversion was statistically lower for the 7 mm groups compared to the 0 and 3 mm groups, which were equivalent to each other. At the bottom of the specimens, none of the factors or interactions was significant (p<0.05). The Kruskal-Wallis test showed that, in general, the soft-start method led to lower microleakage scores when compared to the continuous modes, mainly when associated with a distancing of 7 mm (p<0.01). With the exception of specimens irradiated with 400mW/cm(2) that did not demonstrate variations on scores for the distances tested, higher microleakage was observed for shorter distances from the light source. Conclusions: Soft-start methods may reduce microleakage when the light guide distancing provides a low level of irradiance, which also causes a discrete reduction in the DC.
Resumo:
The influence of composite organic content on polymerization stress development remains unclear. It was hypothesized that stress was directly related to differences in degree of conversion, volumetric shrinkage, elastic modulus, and maximum rate of polymerization encountered in composites containing different BisGMA (bisphenylglycidyl dimethacrylate) concentrations and TEGDMA ( triethylene glycol dimethacrylate) and/or BisEMA ( ethoxylated bisphenol-A dimethacrylate) as co-monomers. Stress was determined in a tensilometer. Volumetric shrinkage was measured with a mercury dilatometer. Elastic modulus was obtained by flexural test. We used fragments of flexural specimens to determine degree of conversion by FT-Raman spectroscopy. Reaction rate was determined by differential scanning calorimetry. Composites with lower BisGMA content and those containing TEGDMA showed higher stress, conversion, shrinkage, and elastic modulus. Polymerization rate did not vary significantly, except for the lower value of the 66% TEGDMA composite. We used linear regressions to evaluate the association between polymerization stress and conversion (R-2 = 0.905), shrinkage ( R-2 = 0.825), and modulus ( R-2 = 0.623).
Resumo:
Purpose: To evaluate early and 24-hour microtensile bond strength (mu TBS) and the degree of conversion (DC) of one representative adhesive system from each of the four current bonding approaches. Methods: 40 human molars were sectioned occluso-gingivally into two halves. Resin composite was bonded incrementally to flat, mid-coronal dentin, using the adhesives Adper Scotchbond MP (MP); Adper Scotchbond 2 (SB); Clearfil SE Bond (SE); and Adper Prompt L-Pop (LP) according to the respective manufacturer`s instructions (n= 10). One half was immediately sectioned into sticks and subjected to mu TBS test. As the sectioning process took approximately 1 hour, the results were designated as 1-hour bond strengths. The other half was stored in distilled water at 37 degrees C for 24 hours before being sectioned and tested. The DC of these systems was measured using Fourier Transform-Raman spectroscopy in three periods: immediately, 1 and 24 hours after polymerization. Data were analyzed with ANOVA and Tukey`s tests. Results: There were no significant differences between the 1-hour and 24-hour bond strengths (P> 0.05), or among the DC measured immediately, 1 hour and 24 hours after polymerization (P> 0.05). However, significant differences were observed among adhesives (P< 0.05). mu TBS values obtained, in MPa (1 hour/24 hour), were: SB (48.6 + 1.3/48.4 + 3.5) = SE (51.9 + 4.7/53.3 +/- 2.9) > MP (35.3 +/- 10.9/38.6 + 6.7) > LP (25.5 + 1.1/26.0 + 1.5). The DC, in percentage (immediately/1 hour/24 hour), were: SE (81/82/87) > MP (79/77/81) > SB (60/63/65) > LP (39/37/42).
Resumo:
Objectives. The purpose of this study was to investigate the effect of light-curing protocol on degree of conversion (DC), volume contraction (C), elastic modulus (E), and glass transition temperature (T(g)) as measured on a model polymer. It was a further aim to correlate the measured values with each other. Methods. Different light-curing protocols were used in order to investigate the influence of energy density (ED), power density (PD), and mode of cure on the properties. The modes of cure were continuous, pulse-delay, and stepped irradiation. DC was measured by Raman micro-spectroscopy. C was determined by pycnometry and a density column. E was measured by a dynamic mechanical analyzer (DMA), and T(g) was measured by differential scanning calorimetry (DSC). Data were submitted to two-and three-way ANOVA, and linear regression analyses. Results. ED, PD, and mode of cure influenced DC, C, E, and T(g) of the polymer. A significant positive correlation was found between ED and DC (r = 0.58), ED and E (r = 0.51), and ED and T(g) (r = 0.44). Taken together, ED and PD were significantly related to DC and E. The regression coefficient was positive for ED and negative for PD. Significant positive correlations were detected between DC and C (r = 0.54), DC and E (r = 0.61), and DC and T(g) (r = 0.53). Comparisons between continuous and pulse-delay modes of cure showed significant influence of mode of cure: pulse-delay curing resulted in decreased DC, decreased C, and decreased T(g). Influence of mode of cure, when comparing continuous and step modes of cure, was more ambiguous. A complex relationship exists between curing protocol, microstructure of the resin and the investigated properties. The overall performance of a composite is thus indirectly affected by the curing protocol adopted, and the desired reduction of C may be in fact a consequence of the decrease in DC. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
We study the process of photodissociation of a molecular Bose-Einstein condensate as a potential source of strongly correlated twin atomic beams. We show that the two beams can possess nearly perfect quantum squeezing in their relative numbers.
Resumo:
A study has been made to investigate the radiation grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) substrates, using the simultaneous irradiation method. Two PFA polymers of different comonomer perfluoropropyl vinyl ether (PPVE) content and degree of crystallinity were used. Effects of grafting conditions such as monomer concentrations, type of solvent, dose rate, and irradiation dose on the grafting yield were investigated. Of the six different solvents used, the most efficient in terms of increasing grafting yield were dichloromethane, benzene, and methanol. The degree of grafting increased with increasing radiation dose up to 500 kGy, stabilizing above this dose. However, the grafting yield decreased with an increase in the dose rate. The grafting of styrene onto the PFA substrates was confirmed by FTIR-ATR and micro-Raman spectroscopy, The increase in the overall grafting yield was accompanied by a proportional increase in the penetration depth of the grafts into the substrate.
Resumo:
This study concerns the radiation grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropylvinylether) (PFA) substrates and the penetration depth of the graft. Grafting was obtained by the simultaneous irradiation method, and the spectroscopic analysis was made with the micro-Raman technique. Effects of grafting conditions such as the type of solvent, dose rate, and irradiation dose on the grafting yield were investigated. Of the different solvents used, the most efficient in terms of increasing grafting yield were dichloromethane, benzene, and methanol, respectively. A mixture of methanol and dichloromethane used as a solvent for styrene achieved a higher degree of grafting and concentration of grafted polystyrene onto the surface of PFA substrates than solutions of the monomer in the separate solvents. The degree of grafting increased with increasing radiation dose up to 500 kGy, stabilizing above this dose. However, the grafting yield decreased with an increase in the dose rate. The increase in the overall grafting yield was accompanied by a proportional increase in the penetration depth of the grafts into the substrate. (C) 2002 Wiley Periodicals, Inc.
Resumo:
The first direct voltammetric response from a molybdenum enzyme under non-turnover conditions is reported. Cyclic voltammetry of dimethylsulfoxide reductase from Rhodobacter capsulatus reveals a reversible Mo-VI/V response at + 161 mV followed by a reversible Mo-V/IV response at -102 mV versus NHE at pH 8. The higher potential couple exhibits a pH dependence consistent with protonation upon reduction to the Mo-V state and we have determined the pK(a) for this semi-reduced species to be 9.0. The lower potential couple is pH independent within the range 5 < pH < 10. The optical spectrum of the Mo chromophore has been investigated with spectroelectrochemistry. At high potential, in its resting state, the enzyme exhibits a spectrum characteristic of the Mo-VI form. This changes significantly following bulk electrolysis (-400 mV versus NHE) at an optically transparent, indium-doped tin oxide working electrode, where a single visible electronic maximum at 632 nm is observed, which is comparable with spectra reported previously for the dithionite-reduced enzyme. This two-electron process is chemically reversible by reoxidizing the enzyme at the electrode in the absence of mediators or promoters. The activity of the enzyme has been established by observation of a catalytic current in the presence of DMSO at pH 8, where a sigmoidal (steady state) voltammogram is seen. Electronic supplementary material to this paper (Fig. S 1) can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-002-0374-y.
Resumo:
Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan. The Mt Morgan Au-Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite-trondhjemite-dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au-Cu. ore is associated with a later quartz-chalcopyrite-pyrite stock work mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au-Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45-80% seawater salinity) and temperatures of 210 to 270 degreesC estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array Of CO2-bearing fluids. Comparison with active submarine hydrothermal vents shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au-Cu. mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu. originated from the Mt Morgan intrusions and a particular volcanic strata that shows elevated Cu background. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The extracellular loop 3 (ECL3) of the mammalian gonadotropin-releasing hormone receptor (GnRH-R) contains an acidic amino acid (Glu(301) in the mouse GnRH-R,) that confers agonist selectivity for Are in mammalian GnRH. It is proposed that a specific conformation of ECL3 is necessary to orientate the carboxyl side chain of the acidic residue for interaction with Arg(8) of GnRH, which is supported by decreased affinity for Arg(8) GnRH but not Gln(8) GnRH when an adjacent Pro is mutated to Ala. To probe the structural contribution of the loop domain to the proposed presentation of the carboxyl side chain, we synthesized a model peptide (CGPEMLNRVSEPGC) representing residues 293-302 of mouse ECL3, where Cys and Gly residues are added symmetrically at the N and C termini, respectively, allowing the introduction of a disulfide bridge to simulate the distances at which the ECL3 is tethered to the transmembrane domains 6 and 7 of the receptor. The ability of the ECL3 peptide to bind GnRH with low affinity was demonstrated by its inhibition of GnRH stimulation of inositol phosphate production in cells expressing the GnRH-R. The CD bands of the ECL3 peptides exhibited a superposition of predominantly unordered structure and partial contributions from beta-sheet structure. Likewise, the analysis of the amide I and amide III bands from micro-Raman and FT Raman experiments revealed mainly unordered conformations of the cyclic and of the linear peptide. NMR data demonstrated the presence of a beta-hairpin among an ensemble of largely disordered structures in the cyclic peptide. The location of the turn linking the two strands of the hairpin was assigned to the three central residues L-296, N-297, and R-298. A small population of structured species among an ensemble of predominantly random coil conformation suggests that the unliganded receptor represents a variety of structural conformers, some of which have the potential to make contacts with the ligand. We propose a mechanism of receptor activation whereby binding of the agonist to the inactive receptor state induces and stabilizes a particular structural state of the loop domain, leading to further conformational rearrangements across the transmembrane domain and signal propagating interaction with G proteins. Interaction of the Glu(301) of the receptor with Arg(8) of GnRH induces a folded configuration of the ligand. Our proposal thus suggests that conformational changes of both ligand and receptor result from this interaction.
Resumo:
Intracellular inclusions in the pedicel and calyx-tube tissues of Chamelaucium uncinatum Schauer ( Myrtaceae) flowers are irregular in shape. They were shown, by polarised light and scanning electron microscopy, to be birefringent 8.9-29.5 mum druse (i.e. aggregate) crystals. Energy-dispersive X-ray spectroscopy showed that these crystals were predominantly composed of calcium. Histochemical and acid-solubility tests indicated that the crystals were calcium oxalate. Raman microprobe spectroscopy was used to confirm this chemical identity. The calcium oxalate crystals were located in xylem-vessel lumens and also in parenchyma cells adjacent to vascular tissues. Thus, the crystals may function to regulate soluble calcium concentrations in C. uncinatum tissues near sites where calcium is unloaded from the xylem.
Resumo:
Over the past 20 years, the incidence of cutaneous malignant melanoma (CMM) has increased dramatically worldwide. A positive family history of the disease is among the most established risk factors for CMM; it is estimated that 10% of CMM cases result from an inherited predisposition. Although mutations in two genes, CDKN2A and CDK4, have been shown to confer an increased risk of CMM, they account for only 20%-25% of families with multiple cases of CMM. Therefore, to localize additional loci involved in melanoma susceptibility, we have performed a genomewide scan for linkage in 49 Australian pedigrees containing at least three CMM cases, in which CDKN2A and CDK4 involvement has been excluded. The highest two-point parametric LOD score (1.82; recombination fraction [theta] 0.2) was obtained at D1S2726, which maps to the short arm of chromosome 1 (1p22). A parametric LOD score of 4.65 (theta = 0) and a nonparametric LOD score of 4.19 were found at D1S2779 in nine families selected for early age at onset. Additional typing yielded seven adjacent markers with LOD scores 13 in this subset, with the highest parametric LOD score, 4.95 (theta = 0) ( nonparametric LOD score 5.37), at D1S2776. Analysis of 33 additional multiplex families with CMM from several continents provided further evidence for linkage to the 1p22 region, again strongest in families with the earliest mean age at diagnosis. A nonparametric ordered sequential analysis was used, based on the average age at diagnosis in each family. The highest LOD score, 6.43, was obtained at D1S2779 and occurred when the 15 families with the earliest ages at onset were included. These data provide significant evidence of a novel susceptibility gene for CMM located within chromosome band 1p22.