988 resultados para Radial glia
Resumo:
We describe a search for compact dwarf galaxies in the Fornax cluster using the FLAIR spectrograph on the UK Schmidt Telescope. We measured radial velocities of 453 compact galaxies brighter than B-T approximate to 17.3 and found seven new compact dwarf cluster members that were not classified in previous surveys as members of the cluster. These are amongst the most compact, high surface brightness dwarf galaxies known. The inclusion of these galaxies in the cluster does not change the total luminosity function significantly, but they are important because of their extreme nature; one in particular appears to be a dwarf spiral. Three of the new dwarfs have strong emission lines and we identify them as blue compact dwarfs (BCDs), doubling the number of confirmed BCDs in the cluster. We also determined that none of the compact dwarf elliptical (M32-like) candidates is in the cluster, down to an absolute magnitude M-B = -13.2. We have investigated the claim of Irwin et al. that there is no strong relation between surface brightness and magnitude for the cluster members and find some support for this for the brighter galaxies (B-T < 17.3), but fainter galaxies still need to be measured.
Resumo:
A finite element model (FEM) of the cell-compression experiment has been developed in dimensionless form to extract the fundamental cell-wall-material properties (i.e. the constitutive equation and its parameters) from experiment force-displacement data. The FEM simulates the compression of a thin-walled, liquid-filled sphere between two flat surfaces. The cell-wall was taken to be permeable and the FEM therefore accounts for volume loss during compression. Previous models assume an impermeable wall and hence a conserved cell volume during compression. A parametric study was conducted for structural parameters representative of yeast. It was shown that the common approach of assuming reasonable values for unmeasured parameters (e.g. cell-wall thickness, initial radial stretch) can give rise to nonunique solutions for both the form and constants in the cell-wall constitutive relationship. Similarly, measurement errors can also lead to an incorrectly defined cell-wall constitutive relationship. Unique determination of the fundamental wall properties by cell compression requires accurate and precise measurement of a minimum set of parameters (initial cell radius, initial cell-wall thickness, and the volume loss during compression). In the absence of such measurements the derived constitutive relationship may be in considerable error, and should be evaluated against its ability to predict the outcome of other mechanical experiments. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
In the preceding paper (Part I) force-deformation data were measured with the compression experiment in conjunction with the initial radial stretch ratio and the initial wall-thickness to cell-radius ratio for baker's yeast (Saccharomyces cerevisiae). In this paper, these data have been analysed with the mechanical model of Smith et al. (Smith, Moxham & Middelberg (1998) Chemical Engineering Science, 53, 3913-3922) with the wall constitutive behaviour defined a priori as incompressible and linear-elastic. This analysis determined the mean Young's modulus ((E) over bar), mean maximum von Mises stress-at-failure (<(sigma)over bar>(VM,f)) and mean maximum von Mises strain-at failure (<(epsilon)over bar>(VM,f)) to be (E) over bar = 150 +/- 15 MPa, <(sigma)over bar>(VM,f) = 70 +/- 4 MPa and <(epsilon)over bar>(VM,f) = 0.75 +/- 0.08, respectively. The mean Young's modulus was not dependent (P greater than or equal to 0.05) on external osmotic pressure (0-0.8 MPa) nor compression rate (1.03-7.68 mu m/s) suggesting the incompressible linear-elastic relationship is representative of the actual cell-wall constitutive behaviour. Hydraulic conductivities were also determined and were comparable to other similar cell types (0-2.5 mu m/MPa s). The hydraulic conductivity distribution was not dependent on external osmotic pressure (0-0.8 MPa) nor compression rate (1.03-7.68 mu m/s) suggesting inclusion of cell-wall permeability in the mechanical model is justified. <(epsilon)over bar>(VM,f) was independent of cell diameter and to a first-approximation unaffected (P greater than or equal to 0.01) by external osmotic pressure and compression rate, thus providing a reasonable failure criterion. This criterion states that the cell-wall material will break when the strain exceeds <(epsilon)over bar>(VM,f) = 0.75 +/- 0.08. Variability in overall cell strength during compression was shown to be primarily due to biological variability in the maximum von Mises strain-at-failure. These data represent the first estimates of cell-wall material properties for yeast and the first fundamental analysis of cell-compression data. They are essential for describing cell-disruption at the fundamental level of fluid-cell interactions in general bioprocesses. They also provide valuable new measurements for yeast-cell physiologists. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The conventional convection-dispersion (also called axial dispersion) model is widely used to interrelate hepatic availability (F) and clearance (Cl) with the morphology and physiology of the liver and to predict effects such as changes in liver blood flow on F and Cl. An extended form of the convection-dispersion model has been developed to adequately describe the outflow concentration-time profiles for vascular markers at both short and long times after bolus injections into perfused livers. The model, based on flux concentration and a convolution of catheters and large vessels, assumes that solute elimination in hepatocytes follows either fast distribution into or radial diffusion in hepatocytes. The model includes a secondary vascular compartment, postulated to be interconnecting sinusoids. Analysis of the mean hepatic transit time (MTT) and normalized variance (CV2) of solutes with extraction showed that the discrepancy between the predictions of MTT and CV2 for the extended and conventional models are essentially identical irrespective of the magnitude of rate constants representing permeability, volume, and clearance parameters, providing that there is significant hepatic extraction. In conclusion, the application of a newly developed extended convection-dispersion model has shown that the unweighted conventional convection-dispersion model can be used to describe the disposition of extracted solutes and, in particular, to estimate hepatic availability and clearance in booth experimental and clinical situations.
Resumo:
Using data from the H I Parkes All Sky Survey (HIPASS), we have searched for neutral hydrogen in galaxies in a region similar to25x25 deg(2) centred on NGC 1399, the nominal centre of the Fornax cluster. Within a velocity search range of 300-3700 km s(-1) and to a 3sigma lower flux limit of similar to40 mJy, 110 galaxies with H I emission were detected, one of which is previously uncatalogued. None of the detections has early-type morphology. Previously unknown velocities for 14 galaxies have been determined, with a further four velocity measurements being significantly dissimilar to published values. Identification of an optical counterpart is relatively unambiguous for more than similar to90 per cent of our H I galaxies. The galaxies appear to be embedded in a sheet at the cluster velocity which extends for more than 30degrees across the search area. At the nominal cluster distance of similar to20 Mpc, this corresponds to an elongated structure more than 10 Mpc in extent. A velocity gradient across the structure is detected, with radial velocities increasing by similar to500 km s(-1) from south-east to north-west. The clustering of galaxies evident in optical surveys is only weakly suggested in the spatial distribution of our H I detections. Of 62 H I detections within a 10degrees projected radius of the cluster centre, only two are within the core region (projected radius
Resumo:
We numerically investigate the dynamical evolution of non-nucleated dwarf elliptical/spiral galaxies (dE) and nucleated ones (dE,Ns) in clusters of galaxies in order to understand the origin of intracluster stellar objects, such as intracluster stars (ICSs), GCs (ICGCs), and ultracompact dwarfs (UCDs) recently discovered by all-object spectroscopic survey centred on the Fornax cluster of galaxies. We find that the outer stellar components of a nucleated dwarf are removed by the strong tidal field of the cluster, whereas the nucleus manages to survive as a result of its initially compact nature. The developed naked nucleus is found to have physical properties (e.g., size and mass) similar to those observed for UCDs. We also find that the UCD formation process, does depend on the radial density profile of the dark halo in the sense that UCDs are less likely to be formed from dwarfs embedded in dark matter halos with central 'cuspy' density profiles. Our simulations also suggest that very massive and compact stellar systems can be rapidly and efficiently formed in the central regions of dwarfs through the merging of smaller GCs. GCs initially in the outer part of dE and dE,Ns are found to be stripped to form ICGCs.
Resumo:
Stibadocerina Alexander, a monotypic genus, includes the only known Neotropical species of the family Cylindrotomidae, S. chilensis Alexander, 1929, from South Central Chile (ca. 36 degrees 50`S-42 degrees 17`S). In this paper, Stibadocerina chilensis is redescribed and illustrated in detail. A study of wing-vein homology in the subfamily Stibadocerinae is provided, to identify the components of the reduced radial sector in Stibadocerina and related taxa. The proposed hypotheses of wing-vein homology are tested, and the systematic position of Stibadocerina is assessed through a cladistic analysis of 13 characters of the male imago, scored for exemplar species of the four genera included in the Stibadocerinae. A single most parsimonious tree supports the monophyly of the Stibadocerinae and the following relationships among its included genera: Stibadocerodes [Stibadocera (Stibadocerella + Stibadocerina)]. The subfamily includes one example of a vicariant distribution with a sister-group relationship between South Central Chilean and East Asian taxa, and supports a biogeographical interpretation of an ancestral trans-Pacific biota.
Resumo:
Background/Aims: The aim of this study is to compare the splanchnic non-hepatic hemodynamics and the metabolic changes during orthotopic liver transplantation between the conventional with bypass and the piggyback methods. Methodology: A prospective, consecutive series of 59 primary transplants were analyzed. Oxygen consumption, glucose, potassium, and lactate metabolism were quantitatively estimated from blood samples from the radial artery and portal vein, collected up to 120 minutes after graft reperfusion. Mean arterial pressure, portal venous pressure, portal venous blood flow, and splanchnic vascular resistance were also measured or calculated at postreperfusion collection times. Results: There was a greater increase in portal venous blood flow (p=0.05) and lower splanchnic vascular resistance (p=0.04) in the piggyback group. Mean arterial pressure and portal venous pressure were similar for both groups. Oxygen, glucose and potassium consumption were higher in the piggyback group, but none of the metabolic parameters differed significantly between groups. Conclusions: In conclusion, the study detected a higher portal venous blood flow and a lower and splanchnic vascular resistance associated with the piggyback technique. After graft reperfusion, no difference in the splanchnic non-hepatic metabolic parameters was observed between the conventional with bypass and the piggyback methods of orthotopic liver transplantation.
Resumo:
Bliacheriene F, Carmona MJC, Barretti CFM, Haddad CMF, Mouchalwat ES, Bortlotto MRFL, Francisco RPV, Zugaib M - Use of a Minimally Invasive Uncalibrated Cardiac Output Monitor in Patients Undergoing Cesarean Section under Spinal Anesthesia: Report of Four Cases. Background and Objectives: Hemodynamic changes are observed during cesarean section under spinal anesthesia. Non-invasive blood pressure (BP) and heart rate (HR) measurements are performed to diagnose these changes, but they are delayed and inaccurate. Other monitors such as filling pressure and cardiac output (CO) catheters with external calibration are very invasive or inaccurate. The objective of the present study was to report the cardiac output measurements obtained with a minimally invasive uncalibrated monitor (LiDCO rapid) in patients undergoing cesarean section under spinal anesthesia. Case report: After approval by the Ethics Commission, four patients agreed to participate in this study. They underwent cesarean section under spinal anesthesia while at the same time being connected to the LiDCO rapid by a radial artery line. Cardiac output, HR, and BP were recorded at baseline, after spinal anesthesia, after fetal and placental extraction, and after the infusion of oxytocin and metaraminol. We observed a fall in BP with an increase of HR and CO after spinal anesthesia and oxytocin infusion; and an increase in BP with a fall in HR and CO after bolus of the vasopressor. Conclusions: Although this monitor had not been calibrated, it showed a tendency for consistent hemodynamic data in obstetric patients and it may be used as a therapeutic guide or experimental tool.
Resumo:
AVFs may be considered the best type of venous access for chronic hemodialysis in pediatric patients with more than 20 kg who are not likely to receive a kidney transplant or be transitioned to peritoneal dialysis within one yr. The aim of the study was to report the experience in the creation of AVFs in pediatric candidates for renal transplantation using microsurgical vascular techniques, with emphasis on the details of the surgical technique. Forty children underwent 50 fistula creations - 31 radial-cephalic, 11 brachial-cephalic, five brachial-basilic and three saphenous-femoral. The vein was anastomosed to the artery in an end-to-lateral fashion by using two separate 8/0 prolene running sutures. The overall patency rate was 76.0%:22 (70.9%) of the radial-cephalic fistulas, nine (81.8%) of the brachial-cephalic, five (100.0%) of the brachial-basilic and two (66.6%) of the saphenous-femoral. There was no significant difference in patency rates between the brachial-cephalic, brachial-basilic and radial-cephalic fistulas. The incidences of fistula patency were not different for patients weighing < 20 kg compared with patients weighing > 20 kg. AVF remains as a satisfactory method for providing hemodialysis in children. The utilization of microsurgical techniques with some technical refinements described herein permits the achievement of high fistula patency rates.
Resumo:
High-pressure homogenization is a key unit operation used to disrupt cells containing intracellular bioproducts. Modeling and optimization of this unit are restrained by a lack of information on the flow conditions within a homogenizer value. A numerical investigation of the impinging radial jet within a homogenizer value is presented. Results for a laminar and turbulent (k-epsilon turbulent model) jet are obtained using the PHOENICS finite-volume code. Experimental measurement of the stagnation region width and correlation of the cell disruption efficiency with jet stagnation pressure both indicate that the impinging jet in the homogenizer system examined is likely to be laminar under normal operating conditions. Correlation of disruption data with laminar stagnation pressure provides a better description of experimental variability than existing correlations using total pressure drop or the grouping 1/Y(2)h(2).
Resumo:
We investigated the impact of obesity on the abnormalities of systolic and diastolic regional left ventricular (LV) function in patients with or without hypertension or hypertrophy, and without heart failure. We studied 120 individuals divided into 6 groups of 20 patients (42 +/- 6 years, 60 females) using standard and pulsed-wave tissue Doppler imaging (TDI) echocardiography, and heterogeneity index (HI): nonobese (I: no hypertension, no hypertrophy, control group; II: hypertension, no hypertrophy; III: hypertension and hypertrophy) and obese (IV: no hypertension, no hypertrophy; V: hypertension, no hypertrophy; VI: hypertension and hypertrophy). The criterion for obesity was BMI >= 30 kg/m(2), for hypertension was blood pressure >= 140/90 mm Hg, for hypertrophy in nonobese was LV mass/body surface area (BSA) >134 g/m(2) (men) and >110 mg/m(2) (women), and in obese was LV mass/height((2.7)) >50 (men) and >40 (women). Obese groups had normal LV ejection fraction compared with nonobese groups, but decreased longitudinal and radial systolic myocardial peak velocities (S`), and early diastolic myocardial peak velocity (E`). Also, a great variability of E` and late diastolic myocardial peak velocity (A`) from the longitudinal basal region was observed in obese groups (E` basal nonobese: 11 +/- 7 vs. obese 19 +/- 11, P < 0.001, A` basal nonobese: 7 +/- 4 vs. obese 11 +/- 7, P < 0.001). Our findings were more evident when comparing groups IV with V and VI, with the latter having concentric hypertrophy and obvious segmental systolic and diastolic dysfunctions. Subclinical myocardial alterations and increased variability of the velocities were observed in obese groups, especially with hypertension and hypertrophy, reflecting impaired regional LV relaxation, segmental atrial, and systolic dysfunctions.
Resumo:
Background: Color Doppler myocardial imaging (CDMI) allows the calculation of local longitudinal or radial strain rate (SR) and strain (epsilon). The aims of this study were to determine the feasibility and reproducibility of longitudinal and radial SR and epsilon in neonates during the first hours of life and to establish reference values. Methods: Data were obtained from 55 healthy neonates (29 male; mean age, 20 +/- 14 hours; mean birth weight, 3,174 +/- 374 g). Apical and parasternal views quantified regional longitudinal and radial SR and epsilon in differing ventricular wall segments. Values at peak systole, early diastole, and late diastole were calculated from the extracted curves. CDMI data acquired at 300 +/- 50 frames/s were analyzed offline. Three consecutive cardiac cycles were measured during normal respiration. The timing of specific systolic or diastolic regional events was determined. Multiple comparisons between walls and segments were made. Results: Left ventricular (LV) longitudinal deformation showed basal differences compared with apical segments within one specific wall. Right ventricular (RV) longitudinal deformation was not homogeneous, with significant differences between basal and apical segments. Longitudinal 3 values were higher in the RV free basal and middle wall segments compared with the left ventricle. In the RV free wall apical segment, longitudinal SR and 3 were maximal. LV systolic SR and epsilon values were higher radially compared with longitudinally (radial peak systolic SR midportion, 2.9 +/- 0.6 s(-1); radial peak systolic epsilon 53.8 +/- 19%; longitudinal peak systolic SR midportion, -1.8 +/- 0.5 s(-1); longitudinal peak systolic epsilon, -24.8 +/- 3%; P < .01). Longitudinal systolic epsilon and SR interobserver variability values were 1.2% and 0.7%, respectively. Conclusion: Ultrasound-based SR and 3 imaging is a practical and reproducible clinical technique in neonates, allowing the calculation of regional longitudinal and radial deformation in RV and LV segments. These regional SR and epsilon indices represent new, noninvasive parameters that can quantify normal neonate regional cardiac function. Independent from visual interpretation, they can be used as reference values for diagnosis in ill neonates. (J Am Soc Echocardiogr 2009;22:369-375.)
Resumo:
Neural phase signaling has gained attention as a putative coding mechanism through which the brain binds the activity of neurons across distributed brain areas to generate thoughts, percepts, and behaviors. Neural phase signaling has been shown to play a role in various cognitive processes, and it has been suggested that altered phase signaling may play a role in mediating the cognitive deficits observed across neuropsychiatric illness. Here, we investigated neural phase signaling in two mouse models of cognitive dysfunction: mice with genetically induced hyperdopaminergia [dopamine transporter knock-out (DAT-KO) mice] and mice with genetically induced NMDA receptor hypofunction [NMDA receptor subunit-1 knockdown (NR1-KD) mice]. Cognitive function in these mice was assessed using a radial-arm maze task, and local field potentials were recorded from dorsal hippocampus and prefrontal cortex as DAT-KO mice, NR1-KD mice, and their littermate controls engaged in behavioral exploration. Our results demonstrate that both DAT-KO and NR1-KD mice display deficits in spatial cognitive performance. Moreover, we show that persistent hyperdopaminergia alters interstructural phase signaling, whereas NMDA receptor hypofunction alters interstructural and intrastructural phase signaling. These results demonstrate that dopamine and NMDA receptor dependent glutamate signaling play a critical role in coordinating neural phase signaling, and encourage further studies to investigate the role that deficits in phase signaling play in mediating cognitive dysfunction.
Resumo:
Hypothesis: This study aimed to evaluate the biocompatibility of alpha-tricalcium phosphate bone cement in the obliteration of the mastoid cavity in guinea pigs. Background: Treatment with open cavity mastoidectomy can present poor functional results in chronic otitis media with cholesteatoma, especially if the cavity is large. Partial or total obliteration of the cavity can overcome these problems. Alpha-tricalcium phosphate bone cement has physicochemical characteristics that suggest its potential in mastoid cavity obliteration. Materials and Methods: Twenty guinea pigs were studied. All animals underwent surgery involving the dorsal tympanic bulla. In the study group animals (n = 10), mastoid cavity obliteration was performed with alpha-tricalcium phosphate bone cement. In the control group animals (n = 10), the cavity was left unfilled. On postoperative day 60, the animals were sacrificed and studied for signs of rejection of the material and other complications. Temporal bones were removed for histopathological study, in which the type and degree of inflammatory response, as well as the degree of ossification, were analyzed. Results: The mortality rate was the same in both groups. Deaths were attributed to anesthetic complications in the initial postoperative period. In the animals that survived, there were no complications, and there was good healing of the incision in both groups. There were no clinical signs of rejection of the material, and the histopathological analysis of the cement group revealed no signs of foreign body reaction (inflammatory response). Conclusion: Alpha-tricalcium phosphate bone cement is biocompatible in the mastoid cavity of guinea pigs.