965 resultados para Rabbit Hippocampal-neurons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thrombin is involved in mediating neuronal death in cerebral ischemia. We investigated its so far unknown mode of activation in ischemic neural tissue. We used an in vitro approach to distinguish the role of circulating coagulation factors from endogenous cerebral mechanisms. We modeled ischemic stroke by subjecting rat organotypic hippocampal slice cultures to 30-min oxygen (5%) and glucose (1 mmol/L) deprivation (OGD). Perinuclear activated factor X (FXa) immunoreactivity was observed in CA1 neurons after OGD. Selective FXa inhibition by fondaparinux during and after OGD significantly reduced neuronal death in the CA1 after 48 h. Thrombin enzyme activity was increased in the medium 24 h after OGD and this increase was prevented by fondaparinux suggesting that FXa catalyzes the conversion of prothrombin to thrombin in neural tissue after ischemia in vitro. Treatment with SCH79797, a selective antagonist of the thrombin receptor protease-activated receptor-1 (PAR-1), significantly decreased neuronal cell death indicating that thrombin signals ischemic damage via PAR-1. The c-Jun N-terminal kinase (JNK) pathway plays an important role in excitotoxicity and cerebral ischemia and we observed activation of the JNK substrate, c-Jun in our model. Both the FXa inhibitor, fondaparinux and the PAR-1 antagonist SCH79797, decreased the level of phospho-c-Jun Ser73. These results indicate that FXa activates thrombin in cerebral ischemia, which leads via PAR-1 to the activation of the JNK pathway resulting in neuronal death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms underlying preferential atrophy of the striatum in Huntington's disease (HD) are unknown. One hypothesis is that a set of gene products preferentially expressed in the striatum could determine the particular vulnerability of this brain region to mutant huntingtin (mHtt). Here, we studied the striatal protein µ-crystallin (Crym). Crym is the NADPH-dependent p38 cytosolic T3-binding protein (p38CTBP), a key regulator of thyroid hormone (TH) T3 (3,5,3'-triiodo-l-thyronine) transportation. It has been also recently identified as the enzyme that reduces the sulfur-containing cyclic ketimines, which are potential neurotransmitters. Here, we confirm the preferential expression of the Crym protein in the rodent and macaque striatum. Crym expression was found to be higher in the macaque caudate than in the putamen. Expression of Crym was reduced in the BACHD and Knock-in 140CAG mouse models of HD before onset of striatal atrophy. We show that overexpression of Crym in striatal medium-size spiny neurons using a lentiviral-based strategy in mice is neuroprotective against the neurotoxicity of an N-terminal fragment of mHtt in vivo. Thus, reduction of Crym expression in HD could render striatal neurons more susceptible to mHtt suggesting that Crym may be a key determinant of the vulnerability of the striatum. In addition our work points to Crym as a potential molecular link between striatal degeneration and the THs deregulation reported in HD patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary sensory neurons in mouse dorsal root ganglia consist of diversified subpopulations which express distinct phenotypic characteristics such as substance P or calbindin D-28k. To determine whether neuronal phenotypes are altered or not in in vitro cultures carried out in a defined synthetic medium, dissociated dorsal root ganglion cells from newborn mice were grown in the alpha-modified minimum essential medium either supplemented with 10% fetal calf serum or serum-free. About 80% of the neurons survived after 5 days of culture in both media, but only 35% or 65% were rescued after 12 days in serum-free or fetal calf serum supplemented medium, respectively. The neuronal subpopulations expressing substance P or calbindin D-28k displayed similar morphological properties in both media and a higher resistance to culture conditions than the whole neuronal cell population, especially in serum-free medium. It is therefore concluded that a defined synthetic medium offers reproducible conditions to culture dorsal root ganglion cells for at least 5 days, stimulates the expression of substance P and enriches preferentially neuronal phenotypes expressing substance P or calbindin D-28k, for a longer period of culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamatergic gliotransmission provides a stimulatory input to excitatory synapses in the hippocampal dentate gyrus. Here, we show that tumor necrosis factor-alpha (TNFα) critically controls this process. With constitutive TNFα present, activation of astrocyte P2Y1 receptors induces localized [Ca(2+)](i) elevations followed by glutamate release and presynaptic NMDA receptor-dependent synaptic potentiation. In preparations lacking TNFα, astrocytes respond with identical [Ca(2+)](i) elevations but fail to induce neuromodulation. We find that TNFα specifically controls the glutamate release step of gliotransmission. In cultured astrocytes lacking TNFα glutamate exocytosis is dramatically slowed down due to altered vesicle docking. Addition of low picomolar TNFα promptly reconstitutes both normal exocytosis in culture and gliotransmission in situ. Alternatively, gliotransmission can be re-established without adding TNFα, by limiting glutamate uptake, which compensates slower release. These findings demonstrate that gliotransmission and its synaptic effects are controlled not only by astrocyte [Ca(2+)](i) elevations but also by permissive/homeostatic factors like TNFα. VIDEO ABSTRACT:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the ontogenesis of dorsal root ganglia (DRG), the immunoreactivity to substance P (SP) and calbindin D-28k (CaBP) appears in chickens at embryonic day 5 (E5) and E10 respectively. To establish the birthdates of primary sensory neurons expressing SP or CaBP, chick embryos were given repetitive intra-amniotic injections of [3H]-thymidine. The neuroblasts giving rise to SP-expressing neurons were labeled up to E6 while those generating CaBP-immunoreactive neurons stopped to incorporate [3H]-thymidine before E5.5. This finding indicates that neurons exhibiting distinct phenotypes may originate from neuroblasts which arrest to proliferate at close but distinct stages of development. To determine whether SP and CaBP are co-expressed or not in DRG neurons, chick embryos at E12, E18, and chickens two weeks after hatching were perfused and fixed to detect simultaneously SP- and CaBP-immunoreactivity in DRG sections. The results showed that SP and CaBP were transiently co-expressed by a subset of neurons at E12. Later, however, the SP-immunoreactivity was gradually lost by these ganglion cells, so that the SP- and CaBP-immunoreaction defined two distinct neuronal subpopulations after hatching. In conclusion, most CaBP-immunoreactive DRG cells derive from a subset of neurons in which SP and CaBP are transiently co-localized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isolated nonperfused rabbit renal proximal tubules were used to investigate the basolateral step of transport of the organic cation N1-methylnicotinamide (NMN). NMN accumulation was highest and saturable in S2 and S3 segments, but lowest and nonsaturable in S1 segments. In S1 segments, accumulation of [3H]-NMN (0.5-8 microM in the bath) resulted in an average tubular water/medium concentration ratio (T/M) of 8.2, whereas in S2 and S3 segments T/M averaged 19.5 and 18.6, respectively. At these concentrations, about 30% of the label was attached in all segments to a metabolite comigrating with nicotinamide. KCN (10(-2) M) or ouabain (10(-4) M) reduced T/M to about 8 for all segments. NMN accumulation was inhibited (to a T/M of about 3 with mepiperphenidol) by other organic cations (10(-5)-10(-3) M) with the potency sequence mepiperphenidol greater than tetraethylammonium = quinine greater than morphine, these organic cations having no effect on p-aminohippurate accumulation, except for the highest concentration of quinine (10(-3) M). After correction for metabolism, NMN accumulation could be accounted for by simple electrochemical equilibrium across the basolateral membrane. The basolateral step of NMN transport appears therefore to be a carrier-mediated diffusion, in opposition to the active basolateral accumulation described for tetraethylammonium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To study the anti-tumoral effect of sunitinib eluting beads in the rabbit VX2 tumor modelMaterials: VX2 tumor were implanted in the left liver lobe of New-Zealand white rabbits. Seven animals received 0.2ml of DC Beads loaded with 6mg of sunitinb (group 1), 6 animals received 0.2ml of DC Beads (group 2) and 6 animals received NaCl 0.9% intra arterially in the left hepatic artery. One animal in each group was sacrificed at 24 hours and the others were left to survive. Liver enzyme were measured daily. In group 1 plasmatic sunitinib concentration were measured daily by LC MS/MS tandem mass spectroscopy. At day 15 all living animals were sacrficed. After sacrifice, or premature euthanasia the livers were harvested for determination of the VEGF receptor tyrosine kinase activity by western blot and histopathological examination.Results: In group 1, no animal died during follow-up. In group 2 and 3, respectively 2 and 3 animals died during follow-up. In group 1 plasmatic sunitinib level remained under therapeutic concentration during the whole experiment. There was an evident lack of phosphorylation of the RTK In group 1 and there was an augmentation of the RTK phosphorylation in group 2 at 24 hours. No difference in RTK activity was noticable at 15 days. From the histopathological point of view it was unpossible to differentiate treatment induced from spontaneous necrosis of tumors.Conclusions: Administration of sunitinib eluting Beads in VX2 carrying rabbits inhibits the activation of RTK's triggered by ischemia. It also seems to prolong survival of the treated animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the thyroid hormones on target cells are mediated through nuclear T3 receptors. In the peripheral nervous system, nuclear T3 receptors were previously detected with the monoclonal antibody 2B3 mAb in all the primary sensory neurons throughout neuronal life and in peripheral glia at the perinatal period only (Eur. J. Neurosci. 5, 319, 1993). To determine whether these nuclear T3 receptors correspond to functional ones able to bind T3, cryostat sections and in vitro cell cultures of dorsal root ganglion (DRG) or sciatic nerve were incubated with 0.1 nM [125I]-labeled T3, either alone to visualize the total T3-binding sites or added with a 10(3) fold excess of unlabeled T3 to estimate the part due to the non-specific T3-binding. After glutaraldehyde fixation, radioautography showed that the specific T3-binding sites were largely prevalent. The T3-binding capacity of peripheral glia in DRG and sciatic nerve was restricted to the perinatal period in vivo and to Schwann cells cultured in vitro. In all the primary sensory neurons, specific T3-binding sites were disclosed in foetal as well as adult rats. The detection of the T3-binding sites in the nucleus indicated that the nuclear T3 receptors are functional. Moreover the concomitant presence of both T3-binding sites and T3 receptors alpha isoforms in the perikaryon of DRG neurons infers that: 1) [125I]-labeled T3 can be retained on the T3-binding 'E' domain of nascent alpha 1 isoform molecules newly-synthesized on the perikaryal ribosomes; 2) the alpha isoforms translocated to the nucleus are modified by posttranslational changes and finally recognized by 2B3 mAb as nuclear T3 receptor. In conclusion, the radioautographic visualization of the T3-binding sites in peripheral neurons and glia confirms that the nuclear T3 receptors are functional and contributes to clarify the discordant intracellular localization provided by the immunocytochemical detection of nuclear T3 receptors and T3 receptor alpha isoforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calbindin and calretinin are two homologous calcium-binding proteins that are expressed by subpopulations of primary sensory neurons. In the present work, we have studied the distribution of the neurons expressing calbindin and calretinin in dorsal root ganglia of the rat and their peripheral projections. Calbindin and calretinin immunoreactivities were expressed by subpopulations of large- and small-sized primary sensory neurons and colocalized in a majority of large-sized ones. The axons emerging from calbindin- or calretinin-immunoreactive neurons innervated muscle spindles, Pacini corpuscles and subepidermal lamellar corpuscles in the glabrous skin, formed palisades of lanceolate endings around hairs and vibrissae, and gave rise to intraepidermal nerve endings in the digital skin. Since most of these afferents are considered as rapidly adapting mechanoreceptors, it is concluded that calbindin- or calretinin-expressing neurons innervate particular mechanoreceptors that display physiological characteristics of rapid adaptation to stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data sheet produced by the Iowa Department of Natural Resources is about different times of animals, insects, snakes, birds, fish, butterflies, etc. that can be found in Iowa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data sheet produced by the Iowa Department of Natural Resources is about different times of animals, insects, snakes, birds, fish, butterflies, etc. that can be found in Iowa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was undertaken in the framework of a larger European project dealing with the characterization of fat co- and by-products from the food chain, available for feed uses. In this study, we compare the effects, on the fatty acid (FA) and tocol composition of chicken and rabbit tissues, of the addition to feeds of a palm fatty acid distillate, very low in trans fatty acids (TFA), and two levels of the corresponding hydrogenated by-product, containing intermediate and high levels of TFA. Thus, the experimental design included three treatments, formulated for each species, containing the three levels of TFA defined above. Obviously, due to the use of hydrogenated fats, the levels of saturated fatty acids (SFA) show clear differences between the three dietary treatments. The results show that diets high in TFA (76 g/kg fat) compared with those low in TFA (4.4 g/kg fat) led to a lower content of tocopherols and tocotrienols in tissues, although these differences were not always statistically significant, and show a different pattern for rabbit and chicken. The TFA content in meat, liver and plasma increased from low-to-high TFA feeds in both chicken and rabbit. However, the transfer ratios from feed were not proportional to the TFA levels in feeds, reflecting certain differences according to the animal species. Moreover, feeds containing fats higher in TFA induced significant changes in tissue SFA, monounsaturated fatty acids and polyunsaturated fatty acids composition, but different patterns can be described for chicken and rabbit and for each type of tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of some fat co- and by-products to feeds is usual nowadays; however, the regulations of their use are not always clear and vary between countries. For instance, the use of recycled cooking oils is not allowed in the European Union, but they are used in other countries. However, oils recovered from industrial frying processes could show satisfactory quality for this purpose. Here we studied the effects of including oils recovered from the frying industry in rabbit and chicken feeds (at 30 and 60 g/kg, respectively) on the fatty acid (FA) and tocol (tocopherol + tocotrienol) compositon of meat, liver and plasma, and on their oxidative stability. Three dietary treatments (replicated eight times) were compared: fresh non-used oil (LOX); oil discarded from the frying industry, having a high content of secondary oxidation compounds (HOX); and an intermediate level (MOX) obtained by mixing 50 : 50 of LOX and HOX. The FA composition of oil diets and tissues was assessed by GC, their tocol content by HPLC, the thiobarbituric acid value was used to assess tissue oxidation status, and the ferrous oxidation-xylenol orange method was used to assess the susceptibility of tissues to oxidation. Our results indicate that FA composition of rabbit and chicken meat, liver and plasma was scarcely altered by the addition of recovered frying oils to feed. Differences were encountered in the FA composition between species, which might be attributed mainly to differences in the FA digestion, absorption and metabolism between species, and to some physiological dietary factors (i.e. coprophagy in rabbits that involves fermentation with FA structure modification). The α-tocopherol (αT) content of tissues was reduced in response to the lower αT content in the recovered frying oil. Differences in the content of other tocols were encountered between chickens and rabbits, which might be attributable to the different tocol composition of their feeds, as well as to species differences in the digestion and metabolism of tocols. Tissue oxidation and susceptibility to oxidation were in general low and were not greatly affected by the degree of oxidation of the oil added to the feeds. The relative content of polyunsaturated fatty acids/αT in these types of samples would explain the differences observed between species in the susceptibility of each tissue to oxidation. According to our results, oils recovered from the frying industry could be useful for feed uses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reelin gene encodes an extracellular protein that is crucial for neuronal migration in laminated brain regions. To gain insights into the functions of Reelin, we performed high-resolution in situ hybridization analyses to determine the pattern of reelin expression in the developing forebrain of the mouse. We also performed double-labeling studies with several markers, including calcium-binding proteins, GAD65/67, and neuropeptides, to characterize the neuronal subsets that express reelin transcripts. reelinexpression was detected at embryonic day 10 and later in the forebrain, with a distribution that is consistent with the prosomeric model of forebrain regionalization. In the diencephalon, expression was restricted to transverse and longitudinal domains that delineated boundaries between neuromeres. During embryogenesis,reelin was detected in the cerebral cortex in Cajal-Retzius cells but not in the GABAergic neurons of layer I. At prenatal stages, reelin was also expressed in the olfactory bulb, and striatum and in restricted nuclei in the ventral telencephalon, hypothalamus, thalamus, and pretectum. At postnatal stages, reelin transcripts gradually disappeared from Cajal-Retzius cells, at the same time as they appeared in subsets of GABAergic neurons distributed throughout neocortical and hippocampal layers. In other telencephalic and diencephalic regions,reelin expression decreased steadily during the postnatal period. In the adult, there was prominent expression in the olfactory bulb and cerebral cortex, where it was restricted to subsets of GABAergic interneurons that co-expressed calbindin, calretinin, neuropeptide Y, and somatostatin. This complex pattern of cellular and regional expression is consistent with Reelin having multiple roles in brain development and adult brain function.