647 resultados para REARRANGEMENTS
Resumo:
Infant acute lymphoblastic leukemia (ALL) with MLL gene rearrangements is characterized by early pre-B phenotype (CD10−/CD19+) and poor treatment outcome. The t(4;11), creating MLL-AF4 chimeric transcripts, is the predominant 11q23 chromosome translocation in infant ALL and is associated with extremely poor prognosis as compared with other 11q23 translocations. We analyzed an infant early preB ALL with ins(5;11)(q31;q13q23) and identified the AF5q31 gene on chromosome 5q31 as a fusion partner of the MLL gene. The AF5q31 gene, which encoded a protein of 1,163 aa, was located in the vicinity of the cytokine cluster region of chromosome 5q31 and contained at least 16 exons. The AF5q31 gene was expressed in fetal heart, lung, and brain at relatively high levels and fetal liver at a low level, but the expression in these tissues decreased in adults. The AF5q31 protein was homologous to AF4-related proteins, including AF4, LAF4, and FMR2. The AF5q31 and AF4 proteins had three homologous regions, including the transactivation domain of AF4, and the breakpoint of AF5q31 was located within the region homologous to the transactivation domain of AF4. Furthermore, the clinical features of this patient with the MLL-AF5q31 fusion transcript, characterized by the early pre-B phenotype (CD10−/CD19+) and poor outcome, were similar to those of patients having MLL-AF4 chimeric transcripts. These findings suggest that AF5q31 and AF4 might define a new family particularly involved in the pathogenesis of 11q23-associated-ALL.
Resumo:
Large conductance calcium- and voltage-sensitive K+ (MaxiK) channels share properties of voltage- and ligand-gated ion channels. In voltage-gated channels, membrane depolarization promotes the displacement of charged residues contained in the voltage sensor (S4 region) inducing gating currents and pore opening. In MaxiK channels, both voltage and micromolar internal Ca2+ favor pore opening. We demonstrate the presence of voltage sensor rearrangements with voltage (gating currents) whose movement and associated pore opening is triggered by voltage and facilitated by micromolar internal Ca2+ concentration. In contrast to other voltage-gated channels, in MaxiK channels there is charge movement at potentials where the pore is open and the total charge per channel is 4–5 elementary charges.
Resumo:
We have investigated the pH dependence of the dynamics of conformational fluctuations of green fluorescent protein mutants EGFP (F64L/S65T) and GFP-S65T in small ensembles of molecules in solution by using fluorescence correlation spectroscopy (FCS). FCS utilizes time-resolved measurements of fluctuations in the molecular fluorescence emission for determination of the intrinsic dynamics and thermodynamics of all processes that affect the fluorescence. Fluorescence excitation of a bulk solution of EGFP decreases to zero at low pH (pKa = 5.8) paralleled by a decrease of the absorption at 488 nm and an increase at 400 nm. Protonation of the hydroxyl group of Tyr-66, which is part of the chromophore, induces these changes. When FCS is used the fluctuations in the protonation state of the chromophore are time resolved. The autocorrelation function of fluorescence emission shows contributions from two chemical relaxation processes as well as diffusional concentration fluctuations. The time constant of the fast, pH-dependent chemical process decreases with pH from 300 μs at pH 7 to 45 μs at pH 5, while the time-average fraction of molecules in a nonfluorescent state increases to 80% in the same range. A second, pH-independent, process with a time constant of 340 μs and an associated fraction of 13% nonfluorescent molecules is observed between pH 8 and 11, possibly representing an internal proton transfer process and associated conformational rearrangements. The FCS data provide direct measures of the dynamics and the equilibrium properties of the protonation processes. Thus FCS is a convenient, intrinsically calibrated method for pH measurements in subfemtoliter volumes with nanomolar concentrations of EGFP.
Resumo:
The hypothesis that chromosomal fragile sites may be “weak links” that result in hot spots for cancer-specific chromosome rearrangements was supported by the discovery that numerous cancer cell homozygous deletions and a familial translocation map within the FHIT gene, which encompasses the common fragile site, FRA3B. Sequence analysis of 276 kb of the FRA3B/FHIT locus and 22 associated cancer cell deletion endpoints shows that this locus is a frequent target of homologous recombination between long interspersed nuclear element sequences resulting in FHIT gene internal deletions, probably as a result of carcinogen-induced damage at FRA3B fragile sites.
Resumo:
The region of human chromosome 22q11 is prone to rearrangements. The resulting chromosomal abnormalities are involved in Velo-cardio-facial and DiGeorge syndromes (VCFS and DGS) (deletions), “cat eye” syndrome (duplications), and certain types of tumors (translocations). As a prelude to the development of mouse models for VCFS/DGS by generating targeted deletions in the mouse genome, we examined the organization of genes from human chromosome 22q11 in the mouse. Using genetic linkage analysis and detailed physical mapping, we show that genes from a relatively small region of human 22q11 are distributed on three mouse chromosomes (MMU6, MMU10, and MMU16). Furthermore, although the region corresponding to about 2.5 megabases of the VCFS/DGS critical region is located on mouse chromosome 16, the relative organization of the region is quite different from that in humans. Our results show that the instability of the 22q11 region is not restricted to humans but may have been present throughout evolution. The results also underscore the importance of detailed comparative mapping of genes in mice and humans as a prerequisite for the development of mouse models of human diseases involving chromosomal rearrangements.
Resumo:
Alveolar rhabdomyosarcoma (ARMS) cells often harbor one of two unique chromosomal translocations, either t(2;13)(q35;q14) or t(1;13)(p36;q14). The chimeric proteins expressed from these rearrangements, PAX3-FKHR and PAX7-FKHR, respectively, are potent transcriptional activators. In an effort to exploit these unique cancer-specific molecules to achieve ARMS-specific expression of therapeutic genes, we have studied the expression of a minimal promoter linked to six copies of a PAX3 DNA binding site, prs-9. In transient transfections, expression of the prs-9-regulated reporter genes was ≈250-fold higher than expression of genes lacking the prs-9 sequences in cell lines derived from ARMS, but remained at or below baseline levels in other cells. High expression of these prs-9-regulated genes was also observed in a cancer cell line that lacks t(2;13) but was stably transfected with a plasmid expressing PAX3-FKHR. Transfection of a plasmid containing the diphtheria toxin A chain gene regulated by prs-9 sequences (pA3–6PED) was selectively cytotoxic for PAX3-FKHR-expressing cells. This was shown by inhibition of gene expression from cotransfected plasmids and by direct cytotoxicity after transfected cells were isolated by cell sorting. Gene transfer of pA3–6PED may thus be useful as a cancer-specific treatment strategy for t(2;13)- or t(1;13)-positive ARMS. Furthermore, gene transfer of fusion protein-regulated toxin genes might also be applied to the treatment of other cancers that harbor cancer-specific chromosomal translocations involving transcription factors.
Resumo:
Using a PCR approach we have isolated racF1, a novel member of the Rho family in Dictyostelium. The racF1 gene encodes a protein of 193 amino acids and is constitutively expressed throughout the Dictyostelium life cycle. Highest identity (94%) was found to a RacF2 isoform, to Dictyostelium Rac1A, Rac1B, and Rac1C (70%), and to Rac proteins of animal species (64–69%). To investigate the role of RacF1 in cytoskeleton-dependent processes, we have fused it at its amino-terminus with green fluorescent protein (GFP) and studied the dynamics of subcellular redistribution using a confocal laser scanning microscope and a double-view microscope system. GFP–RacF1 was homogeneously distributed in the cytosol and accumulated at the plasma membrane, especially at regions of transient intercellular contacts. GFP–RacF1 also localized transiently to macropinosomes and phagocytic cups and was gradually released within <1 min after formation of the endocytic vesicle or the phagosome, respectively. On stimulation with cAMP, no enrichment of GFP–RacF1 was observed in leading fronts, from which it was found to be initially excluded. Cell lines were obtained using homologous recombination that expressed a truncated racF1 gene lacking sequences encoding the carboxyl-terminal region responsible for membrane targeting. These cells displayed normal phagocytosis, endocytosis, and exocytosis rates. Our results suggest that RacF1 associates with dynamic structures that are formed during pinocytosis and phagocytosis. Although RacF1 appears not to be essential, it might act in concert and/or share functions with other members of the Rho family in the regulation of a subset of cytoskeletal rearrangements that are required for these processes.
Resumo:
Formation and discharge of dense-core secretory vesicles depend on controlled rearrangement of the core proteins during their assembly and dispersal. The ciliate Tetrahymena thermophila offers a simple system in which the mechanisms may be studied. Here we show that most of the core consists of a set of polypeptides derived proteolytically from five precursors. These share little overall amino acid identity but are nonetheless predicted to have structural similarity. In addition, sites of proteolytic processing are notably conserved and suggest that specific endoproteases as well as carboxypeptidase are involved in core maturation. In vitro binding studies and sequence analysis suggest that the polypeptides bind calcium in vivo. Core assembly and postexocytic dispersal are compartment-specific events. Two likely regulatory factors are proteolytic processing and exposure to calcium. We asked whether these might directly influence the conformations of core proteins. Results using an in vitro chymotrypsin accessibility assay suggest that these factors can induce sequential structural rearrangements. Such progressive changes in polypeptide folding may underlie the mechanisms of assembly and of rapid postexocytic release. The parallels between dense-core vesicles in different systems suggest that similar mechanisms are widespread in this class of organelles.
Resumo:
We have investigated the process leading to differentiation of PC12 cells. This process is known to include extension of neurites and changes in the expression of subsets of proteins involved in cytoskeletal rearrangements or in neurosecretion. To this aim, we have studied a PC12 clone (trk-PC12) stably transfected with the nerve growth factor receptor TrkA. These cells are able to undergo both spontaneous and neurotrophin-induced morphological differentiation. However, both undifferentiated and nerve growth factor-differentiated trk-PC12 cells appear to be completely defective in the expression of proteins of the secretory apparatus, including proteins of synaptic vesicles and large dense-core granules, neurotransmitter transporters, and neurotransmitter-synthesizing enzymes. These results indicate that neurite extension can occur independently of the presence of the neurosecretory machinery, including the proteins that constitute the fusion machine, suggesting the existence of differential activation pathways for the two processes during neuronal differentiation. These findings have been confirmed in independent clones obtained from PC12-27, a previously characterized PC12 variant clone globally incompetent for regulated secretion. In contrast, the integrity of the Rab cycle appears to be necessary for neurite extension, because antisense oligonucleotides against the neurospecific isoform of Rab-guanosine diphosphate-dissociation inhibitor significantly interfere with process formation.
Resumo:
Cells expressing the NG2 proteoglycan can attach, spread, and migrate on surfaces coated with NG2 mAbs, demonstrating that engagement of NG2 can trigger the cytoskeletal rearrangements necessary for changes in cell morphology and motility. Engagement of different epitopes of the proteoglycan results in distinct forms of actin reorganization. On mAb D120, the cells contain radial actin spikes characteristic of filopodial extension, whereas on mAb N143, the cells contain cortical actin bundles characteristic of lamellipodia. Cells that express NG2 variants lacking the transmembrane and cytoplasmic domains are unable to spread or migrate on NG2 mAb-coated surfaces, indicating that these portions of the molecule are essential for NG2-mediated signal transduction. Cells expressing an NG2 variant lacking the C-terminal half of the cytoplasmic domain can still spread normally on mAbs D120 and N143, suggesting that the membrane-proximal cytoplasmic segment is responsible for this process. In contrast, this variant migrates poorly on mAb D120 and exhibits abnormal arrays of radial actin filaments decorated with fascin during spreading on this mAb. The C-terminal portion of the NG2 cytoplasmic domain, therefore, may be involved in regulating molecular events that are crucial for cell motility.
Resumo:
Rom2p is a GDP/GTP exchange factor for Rho1p and Rho2p GTPases; Rho proteins have been implicated in control of actin cytoskeletal rearrangements. ROM2 and RHO2 were identified in a screen for high-copy number suppressors of cik1Δ, a mutant defective in microtubule-based processes in Saccharomyces cerevisiae. A Rom2p::3XHA fusion protein localizes to sites of polarized cell growth, including incipient bud sites, tips of small buds, and tips of mating projections. Disruption of ROM2 results in temperature-sensitive growth defects at 11°C and 37°C. rom2Δ cells exhibit morphological defects. At permissive temperatures, rom2Δ cells often form elongated buds and fail to form normal mating projections after exposure to pheromone; at the restrictive temperature, small budded cells accumulate. High-copy number plasmids containing either ROM2 or RHO2 suppress the temperature-sensitive growth defects of cik1Δ and kar3Δ strains. KAR3 encodes a kinesin-related protein that interacts with Cik1p. Furthermore, rom2Δ strains exhibit increased sensitivity to the microtubule depolymerizing drug benomyl. These results suggest a role for Rom2p in both polarized morphogenesis and functions of the microtubule cytoskeleton.
Resumo:
It has long been known that rearrangements of chromosomes through breakage-fusion-bridge (BFB) cycles may cause variability of phenotypic and genetic traits within a cell population. Because intercellular heterogeneity is often found in neoplastic tissues, we investigated the occurrence of BFB events in human solid tumors. Evidence of frequent BFB events was found in malignancies that showed unspecific chromosome aberrations, including ring chromosomes, dicentric chromosomes, and telomeric associations, as well as extensive intratumor heterogeneity in the pattern of structural changes but not in tumors with tumor-specific aberrations and low variability. Fluorescence in situ hybridization analysis demonstrated that chromosomes participating in anaphase bridge formation were involved in a significantly higher number of structural aberrations than other chromosomes. Tumors with BFB events showed a decreased elimination rate of unstable chromosome aberrations after irradiation compared with normal cells and other tumor cells. This result suggests that a combination of mitotically unstable chromosomes and an elevated tolerance to chromosomal damage leads to constant genomic reorganization in many malignancies, thereby providing a flexible genetic system for clonal evolution and progression.
Resumo:
A high-resolution physical and genetic map of a major fruit weight quantitative trait locus (QTL), fw2.2, has been constructed for a region of tomato chromosome 2. Using an F2 nearly isogenic line mapping population (3472 individuals) derived from Lycopersicon esculentum (domesticated tomato) × Lycopersicon pennellii (wild tomato), fw2.2 has been placed near TG91 and TG167, which have an interval distance of 0.13 ± 0.03 centimorgan. The physical distance between TG91 and TG167 was estimated to be ≤ 150 kb by pulsed-field gel electrophoresis of tomato DNA. A physical contig composed of six yeast artificial chromosomes (YACs) and encompassing fw2.2 was isolated. No rearrangements or chimerisms were detected within the YAC contig based on restriction fragment length polymorphism analysis using YAC-end sequences and anchored molecular markers from the high-resolution map. Based on genetic recombination events, fw2.2 could be narrowed down to a region less than 150 kb between molecular markers TG91 and HSF24 and included within two YACs: YAC264 (210 kb) and YAC355 (300 kb). This marks the first time, to our knowledge, that a QTL has been mapped with such precision and delimited to a segment of cloned DNA. The fact that the phenotypic effect of the fw2.2 QTL can be mapped to a small interval suggests that the action of this QTL is likely due to a single gene. The development of the high-resolution genetic map, in combination with the physical YAC contig, suggests that the gene responsible for this QTL and other QTLs in plants can be isolated using a positional cloning strategy. The cloning of fw2.2 will likely lead to a better understanding of the molecular biology of fruit development and to the genetic engineering of fruit size characteristics.
Resumo:
Chromosome painting in placental mammalians illustrates that genome evolution is marked by chromosomal synteny conservation and that the association of chromosomes 3 and 21 may be the largest widely conserved syntenic block known for mammals. We studied intrachromosomal rearrangements of the syntenic block 3/21 by using probes derived from chromosomal subregions with a resolution of up to 10–15 Mbp. We demonstrate that the rearrangements visualized by chromosome painting, mostly translocations, are only a fraction of the actual chromosomal changes that have occurred during evolution. The ancestral segment order for both primates and carnivores is still found in some species in both orders. From the ancestral primate/carnivore condition an inversion is needed to derive the pig homolog, and a fission of chromosome 21 and a pericentric inversion is needed to derive the Bornean orangutan condition. Two overlapping inversions in the chromosome 3 homolog then would lead to the chromosome form found in humans and African apes. This reconstruction of the origin of human chromosome 3 contrasts with the generally accepted scenario derived from chromosome banding in which it was proposed that only one pericentric inversion was needed. From the ancestral form for Old World primates (now found in the Bornean orangutan) a pericentric inversion and centromere shift leads to the chromosome ancestral for all Old World monkeys. Intrachromosomal rearrangements, as shown here, make up a set of potentially plentiful and informative markers that can be used for phylogenetic reconstruction and a more refined comparative mapping of the genome.
Resumo:
Translocations involving c-myc and an Ig locus have been reported rarely in human multiple myeloma (MM). Using specific fluorescence in situ hybridization probes, we show complex karyotypic abnormalities of the c-myc or L-myc locus in 19 of 20 MM cell lines and approximately 50% of advanced primary MM tumors. These abnormalities include unusual and complex translocations and insertions that often juxtapose myc with an IgH or IgL locus. For two advanced primary MM tumors, some tumor cells contain a karyotypic abnormality of the c-myc locus, whereas other tumor cells do not, indicating that this karyotypic abnormality of c-myc occurs as a late event. All informative MM cell lines show monoallelic expression of c-myc. For Burkitt's lymphoma and mouse plasmacytoma tumors, balanced translocation that juxtaposes c-myc with one of the Ig loci is an early, invariant event that is mediated by B cell-specific DNA modification mechanisms. By contrast, for MM, dysregulation of c-myc apparently is caused principally by complex genomic rearrangements that occur during late stages of MM progression and do not involve B cell-specific DNA modification mechanisms.