931 resultados para RADIO FREQUENCY IDENTIFICATION SYSTEMS (RFI)
Resumo:
The main objective involved with this paper consists of presenting the results obtained from the application of artificial neural networks and statistical tools in the automatic identification and classification process of faults in electric power distribution systems. The developed techniques to treat the proposed problem have used, in an integrated way, several approaches that can contribute to the successful detection process of faults, aiming that it is carried out in a reliable and safe way. The compilations of the results obtained from practical experiments accomplished in a pilot radial distribution feeder have demonstrated that the developed techniques provide accurate results, identifying and classifying efficiently the several occurrences of faults observed in the feeder.
Resumo:
The main objective involved with this paper consists of presenting the results obtained from the application of artificial neural networks and statistical tools in the automatic identification and classification process of faults in electric power distribution systems. The developed techniques to treat the proposed problem have used, in an integrated way, several approaches that can contribute to the successful detection process of faults, aiming that it is carried out in a reliable and safe way. The compilations of the results obtained from practical experiments accomplished in a pilot distribution feeder have demonstrated that the developed techniques provide accurate results, identifying and classifying efficiently the several occurrences of faults observed in the feeder. © 2006 IEEE.
Resumo:
The aim of this paper is to present a simple method for determining the high frequency parameters of a three-phase induction motor to be used in studies involving variable speed drives with PWM three-phase inverters, in which it is necessary to check the effects caused to the motor by the electromagnetic interference, (EMI) in the differential mode, as well as in the common mode. The motor parameters determination is generally performed in adequate laboratories using accurate instruments, such as very expensive RLC bridges. The method proposed here consists in the identification of the motor equivalent electrical circuit parameters in rated frequency and in high frequency through characteristic tests in the laboratory, together with the use of characteristic equations and curves, shown in the references to be mentioned for determining the motor high frequency parasite capacitances and also through system simulations using dedicated software, like Pspice, determining the characteristic waveforms involved in the differential and common mode phenomena, comparing and validating the procedure through published papers [01].
Resumo:
An alternative method is presented in this paper to identify the harmonic components of non-linear loads in single phase power systems based on artificial neural networks. The components are identified by analyzing the single phase current waveform in time domain in half-cycle of the ac voltage source. The proposed method is compared to the fast Fourier transform. Simulation and experimental results are presented to validate the proposed approach.
Resumo:
Nowadays, systems based on biométrie techniques have a wide acceptance in many different areas, due to their levels of safety and accuracy. A biometrie technique that is gaining prominence is the identification of individuals through iris recognition. However, to be proficiently used these systems must process their recognition task as fast as possible. The goal of this work has been the development of an iris recognition method to produce results rapidly, yet without losing the recognition accuracy. The experimental results show that the method is quite promising. © 2012 Taylor & Francis Group.
Resumo:
Nowadays the method based on demodulation by envelope finds wide application in industry as a technique for evaluation of bearings and other components in rotating machinery. In recent years the application of Wavelets for fault diagnosis in machinery has also obtained good development. This article demonstrates the effectiveness of the combined application of Wavelets and envelope technique (also known as HFRT High-Frequency Resonance Technique) to remove background noise from signals collected from defect bearings and identification of the characteristic frequencies of defects. A comparison of the results obtained with the isolated application of only one method against the combined technique is performed showing the increased capacity in detection of faults in rolling bearings. © (2013) Trans Tech Publications, Switzerland.
Resumo:
A pesca artesanal na costa Norte do Brasil é caracterizado por um conjunto de modalidades de pesca diferentes. Utilizando uma abordagem multidisciplinar, 20 sistemas de produção pesqueira foram identificados, com características distintas em relação à tecnologia e finalidade. As características de cada sistema foram classificados em cinco dimensões (ecológicas, económicas, sociais, tecnológicos e políticos). A análise de escalonamento multidimensional revelou que alguns destes 20 sistemas têm semelhanças maiores. Assim, um total de 10 grupos distintos foram identificados.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A low-cost circuit was developed for stable and efficient maximum power point (MPP) tracking in autonomous photo voltaic-motor systems with variable-frequency drives (VFDs). The circuit is made of two resistors, two capacitors, and two Zener diodes. Its input is the photovoltaic (PV) array voltage and its output feeds the proportional-integral-derivative (PID) controller usually integrated into, the drive. The steady-state frequency-voltage oscillations induced by the circuit were treated in a simplified mathematical model, which was validated by widely characterizing a PV-powered centrifugal pump. General procedures for circuit and controller tuning were recommended based on model equations. The tracking circuit presented here is widely applicable to PV-motor system with VFDs, offering an. efficient open-access technology of unique simplicity. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
In the past few decades detailed observations of radio and X-ray emission from massive binary systems revealed a whole new physics present in such systems. Both thermal and non-thermal components of this emission indicate that most of the radiation at these bands originates in shocks. O and B-type stars and WolfRayet (WR) stars present supersonic and massive winds that, when colliding, emit largely due to the freefree radiation. The non-thermal radio and X-ray emissions are due to synchrotron and inverse Compton processes, respectively. In this case, magnetic fields are expected to play an important role in the emission distribution. In the past few years the modelling of the freefree and synchrotron emissions from massive binary systems have been based on purely hydrodynamical simulations, and ad hoc assumptions regarding the distribution of magnetic energy and the field geometry. In this work we provide the first full magnetohydrodynamic numerical simulations of windwind collision in massive binary systems. We study the freefree emission characterizing its dependence on the stellar and orbital parameters. We also study self-consistently the evolution of the magnetic field at the shock region, obtaining also the synchrotron energy distribution integrated along different lines of sight. We show that the magnetic field in the shocks is larger than that obtained when the proportionality between B and the plasma density is assumed. Also, we show that the role of the synchrotron emission relative to the total radio emission has been underestimated.
Resumo:
We report the discovery of 12 new fossil groups (FGs) of galaxies, systems dominated by a single giant elliptical galaxy and cluster-scale gravitational potential, but lacking the population of bright galaxies typically seen in galaxy clusters. These FGs, selected from the maxBCG optical cluster catalog, were detected in snapshot observations with the Chandra X-ray Observatory. We detail the highly successful selection method, with an 80% success rate in identifying 12 FGs from our target sample of 15 candidates. For 11 of the systems, we determine the X-ray luminosity, temperature, and hydrostatic mass, which do not deviate significantly from expectations for normal systems, spanning a range typical of rich groups and poor clusters of galaxies. A small number of detected FGs are morphologically irregular, possibly due to past mergers, interaction of the intra-group medium with a central active galactic nucleus (AGN), or superposition of multiple massive halos. Two-thirds of the X-ray-detected FGs exhibit X-ray emission associated with the central brightest cluster galaxy (BCG), although we are unable to distinguish between AGN and extended thermal galaxy emission using the current data. This sample representing a large increase in the number of known FGs, will be invaluable for future planned observations to determine FG temperature, gas density, metal abundance, and mass distributions, and to compare to normal (non-fossil) systems. Finally, the presence of a population of galaxy-poor systems may bias mass function determinations that measure richness from galaxy counts. When used to constrain power spectrum normalization and Omega(m), these biased mass functions may in turn bias these results.
Resumo:
This thesis proposes design methods and test tools, for optical systems, which may be used in an industrial environment, where not only precision and reliability but also ease of use is important. The approach to the problem has been conceived to be as general as possible, although in the present work, the design of a portable device for automatic identification applications has been studied, because this doctorate has been funded by Datalogic Scanning Group s.r.l., a world-class producer of barcode readers. The main functional components of the complete device are: electro-optical imaging, illumination and pattern generator systems. For what concerns the electro-optical imaging system, a characterization tool and an analysis one has been developed to check if the desired performance of the system has been achieved. Moreover, two design tools for optimizing the imaging system have been implemented. The first optimizes just the core of the system, the optical part, improving its performance ignoring all other contributions and generating a good starting point for the optimization of the whole complex system. The second tool optimizes the system taking into account its behavior with a model as near as possible to reality including optics, electronics and detection. For what concerns the illumination and the pattern generator systems, two tools have been implemented. The first allows the design of free-form lenses described by an arbitrary analytical function exited by an incoherent source and is able to provide custom illumination conditions for all kind of applications. The second tool consists of a new method to design Diffractive Optical Elements excited by a coherent source for large pattern angles using the Iterative Fourier Transform Algorithm. Validation of the design tools has been obtained, whenever possible, comparing the performance of the designed systems with those of fabricated prototypes. In other cases simulations have been used.
Resumo:
The PhD activity described in the document is part of the Microsatellite and Microsystem Laboratory of the II Faculty of Engineering, University of Bologna. The main objective is the design and development of a GNSS receiver for the orbit determination of microsatellites in low earth orbit. The development starts from the electronic design and goes up to the implementation of the navigation algorithms, covering all the aspects that are involved in this type of applications. The use of GPS receivers for orbit determination is a consolidated application used in many space missions, but the development of the new GNSS system within few years, such as the European Galileo, the Chinese COMPASS and the Russian modernized GLONASS, proposes new challenges and offers new opportunities to increase the orbit determination performances. The evaluation of improvements coming from the new systems together with the implementation of a receiver that is compatible with at least one of the new systems, are the main activities of the PhD. The activities can be divided in three section: receiver requirements definition and prototype implementation, design and analysis of the GNSS signal tracking algorithms, and design and analysis of the navigation algorithms. The receiver prototype is based on a Virtex FPGA by Xilinx, and includes a PowerPC processor. The architecture follows the software defined radio paradigm, so most of signal processing is performed in software while only what is strictly necessary is done in hardware. The tracking algorithms are implemented as a combination of Phase Locked Loop and Frequency Locked Loop for the carrier, and Delay Locked Loop with variable bandwidth for the code. The navigation algorithm is based on the extended Kalman filter and includes an accurate LEO orbit model.