984 resultados para Pulse widths
Resumo:
Experimental investigations of the late-time ion structures formed in the wake of an ultrashort, intense laser pulse propagating in a tenuous plasma have been performed using the proton imaging technique. The pattern found in the wake of the laser pulse shows unexpectedly regular modulations inside a long, finite width channel. On the basis of extensive particle in cell simulations of the plasma evolution in the wake of the pulse, we interpret this pattern as due to ion modulations developed during a two-stream instability excited by the return electric current generated by the wakefield.
Resumo:
The self-modulation of waves propagating in nonlinear magnetic metamaterials is investigated. Considering the propagation of a modulated amplitude magnetic field in such a medium, we show that the self-modulation of the carrier wave leads to a spontaneous energy localization via the generation of localized envelope structures (envelope solitons), whose form and properties are discussed. These results are also supported by numerical calculations.
Resumo:
The proton energy spectrum from photodissociation of the hydrogen molecular ion by short intense pulses of infrared light is calculated. The time-dependent Schrödinger equation is discretized and integrated. For few-cycle pulses one can resolve vibrational structure, arising from the experimental preparation of the molecular ion. We calculate the corresponding energy spectrum and analyse the dependence on the pulse time delay, pulse length and intensity of the laser for ? ~ 790 nm. We conclude that the proton spectrum is a sensitive probe of both the vibrational populations and phases, and allows us to distinguish between adiabatic and nonadiabatic dissociation. Furthermore, the sensitivity of the proton spectrum from H2+ is a practical means of calibrating the pulse. Our results are compared with recent measurements of the proton spectrum for 65 fs pulses using a Ti:Sapphire laser (? ~ 790 nm) including molecular orientation and focal-volume averaging. Integrating over the laser focal volume, for the intensity I ~ 3 × 1015 W cm-2, we find our results are in excellent agreement with these experiments.
Resumo:
The viability of using beams of molecular ions as a target for strong field fragmentation studies using intense ultra-short laser pulses is demonstrated. In this way the production mechanism for multiply charged ions in strong fields may be elucidated.
Resumo:
We have performed short-pulse x-ray scattering measurements on laser-driven shock-compressed plastic samples in the warm dense matter regime, providing instantaneous snapshots of the system evolution. Time-resolved and angularly resolved scattered spectra sensitive to the correlation effects in the plasma show the appearance of short-range order within a few interionic separations. Comparison with radiation-hydrodynamic simulations indicates that the shocked plastic is compressed with a temperature of a few electron volts. These results are important for the understanding of the thermodynamic behavior of strongly correlated matter for conditions relevant to both laboratory astrophysics and inertial confinement fusion research.