975 resultados para Pseudo phase plane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique for computing the spectral and angular (both the zenith and azimuthal) distribution of the solar energy reaching the surface of earth and any other plane in the atmosphere has been developed. Here the computer code LOWTRAN is used for getting the atmospheric transmittances in conjunction with two approximate procedures: one based on the Eddington method and the other on van de Hulst's adding method, for solving the equation of radiative transfer to obtain the diffuse radiation in the cloud-free situation. The aerosol scattering phase functions are approximated by the Hyeney-Greenstein functions. When the equation of radiative transfer is solved using the adding method, the azimuthal and zenith angle dependence of the scattered radiation is evaluated, whereas when the Eddington technique is utilized only the total downward flux of scattered solar radiation is obtained. Results of the diffuse and beam components of solar radiation received on surface of earth compare very well with those computed by other methods such as the more exact calculations using spherical harmonics and when atmospheric conditions corresponding to that prevailing locally in a tropical location (as in India) are used as inputs the computed values agree closely with the measured values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleataon growth model of electrochemical phase formation is analysed for the hnear potential sweep input Apart from deducing diagnostic criteria and method~ of estimating model parameters, the predictions of the nucleation growth model are compared and contrasted with those of a sample adsorption model A dastlnCtlOn is made possible between adsorption and phase transition, which seems useful for understanding the nature of ECPF phenomena, especially underpotentlal deposition (UPD).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report three prominent observations made on the nanoscale charge ordered ( CO) manganites RE(1-x)AE(x)MnO(3) (RE = Nd, Pr; AE = Ca; x = 0.5) probed by temperature dependent magnetization and magneto-transport, coupled with electron magnetic/paramagnetic resonance spectroscopy (EMR/EPR). First, evidence is presented to show that the predominant ground state magnetic phase in nanoscale CO manganites is ferromagnetic and it coexists with a residual anti-ferromagnetic phase. Secondly, the shallow minimum in the temperature dependence of the EPR linewidth shows the presence of a charge ordered phase in nanoscale manganites which was shown to be absent from the DC static magnetization and transport measurements. Thirdly, the EPR linewidth, reflective of spin dynamics, increases significantly with a decrease of particle size in CO manganites. We discuss the interesting observations made on various samples of different particle sizes and give possible explanations. We have shown that EMR spectroscopy is a highly useful technique to probe the 'hindered charge ordered phase' in nanoscale CO manganites, which is not possible by static DC magnetization and transport measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Einstein's gravitational field is non-minimally coupled to a self-interacting scalar field in the presence of radiation. Such a theory can give rise to a phase transition associated with a change of sign of the gravitational “constant”. In our approach, the criterion for stability is formulated in terms of an effective potential, the phase-transition takes place due to temperature dependence of the scalar self-interaction coupling constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high temperature phase transformation of hydrazonium sulfate, N2H6SO4 has been studied using DSC. The enthalpy of phase transition is found to be 3.63 ± 0.1 kJ mole−1. The phase transition temperature is found to decrease with the increase of particle size. It appears that the strain energy and not surface energy, is responsible for the phase transformation. The molar volume of the salt increases during the transformation as found by the dilatometric experiment involving percentage of linear thermal expansion. On cooling, the transformation from the high temperature modification to orthorhombic form is incomplete and extends over a wide range of temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the results of a detailed investigation on the metastable phase relations in undercooled as well as rapidly solidified Al---Ge alloys containing 2–50 at.% Ge are reported. Data obtained on the structure and morphology of phases enable us to arrive at the phase relations and transformation processes occurring in undercooled and rapidly quenched melts of this system. These results are explained with the help of a metastable phase diagram consisting of a peritectic and eutectic reaction involving metastable phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C13HlsN205 S, M r = 314.35, orthorhombic, P212121 with a = 39.526 (4), b = 6.607 (2), c = 5.661 (2) A, Z = 4, V = 1478.36 A 3, D c = 1.412 Mg m -3, Cu Ka radiation. Final R = 0.073 for 1154 observed counter reflections. The sulphur atom is in a pseudo-equatorial position with respect to the dihydrouracil ring. The sugar pucker is predominantly O(l')-exo unlike the C(3')-exo,C(4')-endo observed for 2',3'-O-isopropylideneuridine (ISPU). The fivemembered dioxolane ring has C(7) displaced by 0.497 (7)A from the best plane through atoms 0(2'), C(2'), C(3'), 0(3'), in contrast to ISPU where 0(3') shows the maximum deviation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of Raman spectroscopic studies of (NH4)2ZnBr4 crystal in the spectral range from 20-250 cm-1 and over a range of temperature from 90K to 440K covering the low temperature ferroelectric and high temperature incommensurate phases are presented. The plots of the integrated areas and peak heights of the strong Raman lines versus temperature show anomalous behaviour near the two phase transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations on the phase relations and dielectric properties of (1 -x)BaTiO3 + xNd2/3TiO 3 (BNT) ceramics sintered in air below 1650 K have been carried out. X-ray powder diffraction studies indicate apparent phase singularity for compositions with x < 0.3. Nd2Ti207 is detected at higher neodymium concentrations. The unit cell parameter changes continuously with neodymium content, and BaTiO3 is completely cubic at room temperature with x -- 0.0525, whereas electron diffraction studies indicate that the air-sintered BNT ceramics with x > 0.08 contain additional phases that are partly amorphous even to an electron beam. SEM observations reveal that BaTiO3 grains are mostly covered by a molten intergranular phase, and show the presence of randomly distributed Nd2Ti207 grains. Energy dispersive X-ray analysis shows the Ba-Nd-Ti ternary composition of the intergranular phase. Differential thermal analysis studies support the formation of a partial melt involving dissolution-precipitation of boundary layers of BaTiO3 grains. These complex phase relations are accounted for in terms of the phase instability of BaTiO3 with large cation-vacancy concentration as a result of heavy Nd 3+ substitution. The absence of structural intergrowth in (1 - x)BaTiO3 + xNd2/3TiO3 under oxidative conditions leads to a separation of phases wherein the new phases undergo melting and remain X-ray amorphous. BNT ceramics with 0.1 < x < 0.3 have ~eff >~ 104 with tan 6 < 0.1 and nearly flat temperature capacitance characteristics. The grain-size dependence of ee,, variations of ~eff and tan 6 with the measuring frequency, the non-ohmic resistivities, and the non-linear leakage currents at higher field-strengths which are accompanied by the decrease in eeff and rise in tan 3, are explained on the basis of an intergranular (internal boundary layer) dielectric characteristic of these ceramics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In closed-die forging the flash geometry should be such as to ensure that the cavity is completely filled just as the two dies come into contact at the parting plane. If metal is caused to extrude through the flash gap as the dies approach the point of contact — a practice generally resorted to as a means of ensuring complete filling — dies are unnecessarily stressed in a high-stress regime (as the flash is quite thin and possibly cooled by then), which reduces the die life and unnecessarily increases the energy requirement of the operation. It is therefore necessary to carefully determine the dimensions of the flash land and flash thickness — the two parameters, apart from friction at the land, which control the lateral flow. The dimensions should be such that the flow into the longitudinal cavity is controlled throughout the operation, ensuring complete filling just as the dies touch at the parting plane. The design of the flash must be related to the shape and size of the forging cavity as the control of flow has to be exercised throughout the operation: it is possible to do this if the mechanics of how the lateral extrusion into the flash takes place is understood for specific cavity shapes and sizes. The work reported here is part of an ongoing programme investigating flow in closed-die forging. A simple closed shape (no longitudinal flow) which may correspond to the last stages of a real forging operation is analysed using the stress equilibrium approach. Metal from the cavity (flange) flows into the flash by shearing in the cavity in one of the three modes considered here: for a given cavity the mode with the least energy requirement is assumed to be the most realistic. On this basis a map has been developed which, given the depth and width of the cavity as well as the flash thickness, will tell the designer of the most likely mode (of the three modes considered) in which metal in the cavity will shear and then flow into the flash gap. The results of limited set of experiments, reported herein, validate this method of selecting the optimum model of flow into the flash gap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-state Ising model has been applied to the two-dimensional condensation of tymine at the mercury-water interface. The model predicts a quadratic dependence of the transition potential on temperature and on the logarithm of the adsorbate concentration. Both predictions have been confirmed experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detailed electronic structure of the n-v addition compound H2O·BF3 has been investigated for the first time by a combined use of electron energy loss spectroscopy (EELS) and UV photoelectron spectroscopy (UPS) augmented by MO calculations. The calculated molecular orbital energies of H2O·BF3 agree well with the UPS results and have been used to assign the electronic transitions obtained from EELS and to construct an orbital correlation diagram. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.