992 resultados para Proteins - metabolism
Resumo:
Telomeres are associated with chromatin-mediated silencing of genes in their vicinity. However, how epigenetic markers mediate mammalian telomeric silencing and whether specific proteins may counteract this effect are not known. We evaluated the ability of CTF1, a DNA- and histone-binding transcription factor, to prevent transgene silencing at human telomeres. CTF1 was found to protect a gene from silencing when its DNA-binding sites were interposed between the gene and the telomeric extremity, while it did not affect a gene adjacent to the telomere. Protein fusions containing the CTF1 histone-binding domain displayed similar activities, while mutants impaired in their ability to interact with the histone did not. Chromatin immunoprecipitation indicated the propagation of a hypoacetylated histone structure to various extents depending on the telomere. The CTF1 fusion protein was found to recruit the H2A.Z histone variant at the telomeric locus and to restore high histone acetylation levels to the insulated telomeric transgene. Histone lysine trimethylations were also increased on the insulated transgene, indicating that these modifications may mediate expression rather than silencing at human telomeres. Overall, these results indicate that transcription factors can act to delimit chromatin domain boundaries at mammalian telomeres, thereby blocking the propagation of a silent chromatin structure.
Resumo:
By using an in vitro model of antibody-mediated demyelination, we investigated the relationship between tumor necrosis factor-alpha (TNF-alpha) and heat shock protein (HSP) induction with respect to oligodendrocyte survival. Differentiated aggregate cultures of rat telencephalon were subjected to demyelination by exposure to antibodies against myelin oligodendrocyte glycoprotein (MOG) and complement. Cultures were analyzed 48 hr after exposure. Myelin basic protein (MBP) expression was greatly decreased, but no evidence was found for either necrosis or apoptosis. TNF-alpha was significantly up-regulated. It was localized predominantly in neurons and to a lesser extent in astrocytes and oligodendrocytes, and it was not detectable in microglial cells. Among the different HSPs examined, HSP32 and alphaB-crystallin were up-regulated; they may confer protection from oxidative stress and from apoptotic death, respectively. These results suggest that TNF-alpha, often regarded as a promoter of oligodendroglial death, could alternatively mediate a protective pathway through alphaB-crystallin up-regulation.
Resumo:
Many nuclear hormone receptors are involved in the regulation of skin homeostasis. However, their role in the epithelial compartment of the skin in stress situations, such as skin healing, has not been addressed yet. The healing of a skin wound after an injury involves three major cell types: immune cells, which are recruited to the wound bed; dermal fibroblasts; and epidermal and hair follicle keratinocytes. Our previous studies have revealed important but nonredundant roles of PPARalpha and beta/delta in the reparation of the skin after a mechanical injury in the adult mouse. However, the mesenchymal or epithelial cellular compartment in which PPARalpha and beta/delta play a role could not be determined in the null mice used, which have a germ line PPAR gene invalidation. In the present work, the role of PPARalpha was studied in keratinocytes, using transgenic mice that express a PPARalpha mutant with dominant-negative (dn) activity specifically in keratinocytes. This dn PPARalpha lacks the last 13 C terminus amino acids, binds to a PPARalpha agonist, but is unable to release the nuclear receptor corepressor and to recruit the coactivator p300. When selectively expressed in keratinocytes of transgenic mice, dn PPARalphaDelta13 causes a delay in the healing of skin wounds, accompanied by an exacerbated inflammation. This phenotype, which is similar to that observed in PPARalpha null mice, strongly suggests that during skin healing, PPARalpha is required in keratinocytes rather than in other cell types.
Resumo:
Cyclooxygenase-2 (COX-2), a key enzyme in arachidonic acid metabolism, is overexpressed in many cancers. Inhibition of COX-2 by nonsteroidal anti-inflammatory drugs (NSAIDs) reduces the risk of cancer development in humans and suppresses tumor growth in animal models. The anti-cancer effect of NSAIDs seems to involve suppression of tumor angiogenesis, but the underlying mechanism is not completely understood. Integrin alpha V beta 3 is an adhesion receptor critically involved in mediating tumor angiogenesis. Here we show that inhibition of endothelial-cell COX-2 by NSAIDs suppresses alpha V beta 3-dependent activation of the small GTPases Cdc42 and Rac, resulting in inhibition of endothelial-cell spreading and migration in vitro and suppression of fibroblast growth factor-2-induced angiogenesis in vivo. These results establish a novel functional link between COX-2, integrin alpha V beta 3 and Cdc42-/Rac-dependent endothelial-cell migration. Moreover, they provide a rationale to the understanding of the anti-angiogenic activity of NSAIDs.
Resumo:
B cells undergo a complex series of maturation and selection steps in the bone marrow and spleen during differentiation into mature immune effector cells. The tumor necrosis factor (TNF) family member B cell activating factor of the TNF family (BAFF) (BLyS/TALL-1) plays an important role in B cell homeostasis. BAFF and its close homologue a proliferation-inducing ligand (APRIL) have both been shown to interact with at least two receptors, B cell maturation antigen (BCMA) and transmembrane activator and cyclophilin ligand interactor (TACI), however their relative contribution in transducing BAFF signals in vivo remains unclear. To functionally inactivate both BAFF and APRIL, mice transgenic for a soluble form of TACI were generated. They display a developmental block of B cell maturation in the periphery, leading to a severe depletion of marginal zone and follicular B2 B cells, but not of peritoneal B1 B cells. In contrast, mice transgenic for a soluble form of BCMA, which binds APRIL, have no detectable B cell phenotype. This demonstrates a crucial role for BAFF in B cell maturation and strongly suggests that it signals via a BCMA-independent pathway and in an APRIL-dispensable way.
Resumo:
Recently, rapid and transient cardiac pacing was shown to induce preconditioning in animal models. Whether the electrical stimulation per se or the concomitant myocardial ischemia affords such a protection remains unknown. We tested the hypothesis that chronic pacing of a cardiac preparation maintained in a normoxic condition can induce protection. Hearts of 4-day-old chick embryos were electrically paced in ovo over a 12-h period using asynchronous and intermittent ventricular stimulation (5 min on-10 min off) at 110% of the intrinsic rate. Sham (n = 6) and paced hearts (n = 6) were then excised, mounted in vitro, and subjected successively to 30 min of normoxia (20% O(2)), 30 min of anoxia (0% O(2)), and 60 min of reoxygenation (20% O(2)). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout the experiment. Reoxygenation-induced chrono-, dromo-, and inotropic disturbances, incidence of arrhythmias, and changes in electromechanical delay (EMD) in atria and ventricle were systematically investigated in sham and paced hearts. Under normoxia, the isolated heart beat spontaneously and regularly, and all baseline functional parameters were similar in sham and paced groups (means +/- SD): heart rate (190 +/- 36 beats/min), P-R interval (104 +/- 25 ms), mechanical atrioventricular propagation (20 +/- 4 mm/s), ventricular shortening velocity (1.7 +/- 1 mm/s), atrial EMD (17 +/- 4 ms), and ventricular EMD (16 +/- 2 ms). Under anoxia, cardiac function progressively collapsed, and sinoatrial activity finally stopped after approximately 9 min in both groups. During reoxygenation, paced hearts showed 1) a lower incidence of arrhythmias than sham hearts, 2) an increased rate of recovery of ventricular contractility compared with sham hearts, and 3) a faster return of ventricular EMD to basal value than sham hearts. However, recovery of heart rate, atrioventricular conduction, and atrial EMD was not improved by pacing. Activity of all hearts was fully restored at the end of reoxygenation. These findings suggest that chronic electrical stimulation of the ventricle at a near-physiological rate selectively alters some cellular functions within the heart and constitutes a nonischemic means to increase myocardial tolerance to a subsequent hypoxia-reoxygenation.
Resumo:
Protein-ligand docking has made important progress during the last decade and has become a powerful tool for drug development, opening the way to virtual high throughput screening and in silico structure-based ligand design. Despite the flattering picture that has been drawn, recent publications have shown that the docking problem is far from being solved, and that more developments are still needed to achieve high successful prediction rates and accuracy. Introducing an accurate description of the solvation effect upon binding is thought to be essential to achieve this goal. In particular, EADock uses the Generalized Born Molecular Volume 2 (GBMV2) solvent model, which has been shown to reproduce accurately the desolvation energies calculated by solving the Poisson equation. Here, the implementation of the Fast Analytical Continuum Treatment of Solvation (FACTS) as an implicit solvation model in small molecules docking calculations has been assessed using the EADock docking program. Our results strongly support the use of FACTS for docking. The success rates of EADock/FACTS and EADock/GBMV2 are similar, i.e. around 75% for local docking and 65% for blind docking. However, these results come at a much lower computational cost: FACTS is 10 times faster than GBMV2 in calculating the total electrostatic energy, and allows a speed up of EADock by a factor of 4. This study also supports the EADock development strategy relying on the CHARMM package for energy calculations, which enables straightforward implementation and testing of the latest developments in the field of Molecular Modeling.
Copper acquisition by the SenC protein regulates aerobic respiration in Pseudomonas aeruginosa PAO1.
Resumo:
Aerobic respiration of Pseudomonas aeruginosa involves four terminal oxidases belonging to the heme-copper family (that is, three cytochrome c oxidases and one quinol oxidase) plus one copper-independent, cyanide-insensitive quinol oxidase (CIO). The PA0114 gene encoding an SCO1/SenC-type protein, which is known to be important for copper delivery to cytochrome c in yeast, Rhodobacter spp. and Agrobacterium tumefaciens, was found to be important for copper acquisition and aerobic respiration in P. aeruginosa. A PA0114 (senC) mutant grew poorly in low-copper media and had low cytochrome cbb(3)-type oxidase activity, but expressed CIO at increased levels, by comparison with the wild-type PAO1. Addition of copper reversed these phenotypes, suggesting that periplasmic copper capture by the SenC protein helps P. aeruginosa to adapt to copper deprivation.
Resumo:
The major envelope antigen of vaccinia virus is an acylated protein of M(r) 37,000 (p37K) which is required for the formation of extracellular enveloped virions (EEV). Despite its important role in the wrapping process, p37K has not been studied in much detail. In order to better characterize this protein we have undertaken a detailed biochemical analysis. Sodium carbonate treatment showed that p37K is tightly bound to the viral envelope. Its resistance to proteinase K digestion indicates that it is not exposed on the surface of EEV but lines the inner side of the envelope. Since p37K does not contain a signal peptide characteristic of most membrane proteins, we examined the possibility that the protein acquires its membrane affinity through the addition of fatty acids. Indeed, Triton X-114 phase partitioning experiments demonstrated that p37K is hydrophobic when acylated, but hydrophilic in the absence of fatty acids. Three other viral proteins have been shown to be required for virus envelopment and release from the host cell and we therefore tested whether p37K interacts with viral proteins. In EEV and in absence of reducing agents, an 80-kDa complex reacting with an anti-37K antiserum was found. Analysis of this complex showed that it most likely consists of a p37K homodimer. Interestingly, only a small amount of p37K occurs as a complex, most of it is present in the viral envelope as monomers.
Resumo:
Purpose: To examine the possible role of H+-activated acid-sensing ion channels (ASICs) in pain perception we characterized their expression in bladder dome biopsies of Bladder Pain Syndrome (BPS) patients and controls, in cultured human urothelium and in urothelial TEU-2 cells.Materials and Methods: Cold cut biopsies from the bladder dome were obtained in 8 asymptomatic controls and 28 patients with symptoms of BPS. ASIC expression was analyzed by QPCR and immunofluorescence. The channel function was measured by electrophysiology.Results: ASIC1a, ASIC2a and ASIC3 mRNAs were detected in human bladder. Similar amounts of ASIC1a and -3 were detected in detrusor smooth muscle, whereas in urothelium ASIC3 levels were higher than -1a. ASIC2a mRNA levels were lower than either -1a or -3 in both layers. ASIC currents were measured in TEU-2 cells and in primary cultures of human urothelium, and ASIC expression was confirmed by QPCR. Differentiation of TEU-2 cells caused an up-regulation of ASIC2a and ASIC3, and a down-regulation of ASIC1a mRNAs. BPS patients showed an up-regulation of ASIC2a and -3 mRNA, whereas ASIC1a remained unchanged. In contrast, the mRNA levels of TRPV1 were down-regulated during BPS. All differences were statistically significant (p<0.05)Conclusions: Several different ASIC subunits are expressed in human bladder and TEU-2 cells, where their levels are regulated during urothelial differentiation. An up-regulation of ASIC2a and -3 in BPS suggests their involvement in increased pain and hyperalgesia. A down-regulation of TRPV1 mRNA levels might indicate a different regulatory mechanism, controlling its expression in human bladder.
Resumo:
PURPOSE: Acute myeloid leukemia (AML) with inv(3)(q21q26.2)/t(3;3)(q21;q26.2) [inv(3)/t(3;3)] is recognized as a distinctive entity in the WHO classification. Risk assignment and clinical and genetic characterization of AML with chromosome 3q abnormalities other than inv(3)/t(3;3) remain largely unresolved. PATIENTS AND METHODS: Cytogenetics, molecular genetics, therapy response, and outcome analysis were performed in 6,515 newly diagnosed adult AML patients. Patients were treated on Dutch-Belgian Hemato-Oncology Cooperative Group/Swiss Group for Clinical Cancer Research (HOVON/SAKK; n = 3,501) and German-Austrian Acute Myeloid Leukemia Study Group (AMLSG; n = 3,014) protocols. EVI1 and MDS1/EVI1 expression was determined by real-time quantitative polymerase chain reaction. RESULTS: 3q abnormalities were detected in 4.4% of AML patients (288 of 6,515). Four distinct groups were defined: A: inv(3)/t(3;3), 32%; B: balanced t(3q26), 18%; C: balanced t(3q21), 7%; and D: other 3q abnormalities, 43%. Monosomy 7 was the most common additional aberration in groups (A), 66%; (B), 31%; and (D), 37%. N-RAS mutations and dissociate EVI1 versus MDS1/EVI1 overexpression were associated with inv(3)/t(3;3). Patients with inv(3)/t(3;3) and balanced t(3q21) at diagnosis presented with higher WBC and platelet counts. In multivariable analysis, only inv(3)/t(3;3), but not t(3q26) and t(3q21), predicted reduced relapse-free survival (hazard ratio [HR], 1.99; P < .001) and overall survival (HR, 1.4; P = .006). This adverse prognostic impact of inv(3)/t(3;3) was enhanced by additional monosomy 7. Group D 3q aberrant AML also had a poor outcome related to the coexistence of complex and/or monosomal karyotypes and cryptic inv(3)/t(3;3). CONCLUSION: Various categories of 3q abnormalities in AML can be distinguished according to their clinical, hematologic, and genetic features. AML with inv(3)/t(3;3) represents a distinctive subgroup with unfavorable prognosis.
Resumo:
Fertility and flower development are both controlled in part by jasmonates, fatty acid-derived mediators produced via the activity of 13-lipoxygenases (13-LOXs). The Arabidopsis thaliana Columbia-0 reference genome is predicted to encode four of these enzymes and it is already known that one of these, LOX2, is dispensable for fertility. In this study, the roles of the other three 13-LOXs (LOX3, LOX4 and LOX6) were investigated in single and double mutants. Four independent lox3 lox4 double mutants assembled with different mutated lox3 and lox4 alleles had fully penetrant floral phenotypes, displaying abnormal anther maturation and defective dehiscence. The plants were no longer self-fertile and pollen was not viable. Fertility in the double mutant was restored genetically by complementation with either the LOX3 or the LOX4 cDNAs and biochemically with exogenous jasmonic acid. Furthermore, deficiency in LOX3 and LOX4 causes developmental dysfunctions, compared to wild type; lox3 lox4 double mutants are taller and develop more inflorescence shoots and flowers. Further analysis revealed that developmental arrest in the lox3 lox4 inflorescence occurs with the production of an abnormal carpelloid flower. This distinguishes lox3 lox4 mutants from the wild type where developmentally typical flower buds are the terminal inflorescence structures observed in both the laboratory and in nature. Our studies of lox3 lox4 as well as other jasmonic acid biosynthesis and perception mutants show that this plant hormone is not only required for male fertility but also involved in global proliferative arrest.
Resumo:
We have mutated a single residue, Thr373 [corrected], in the C-terminal portion of the third intracellular loop of the alpha 2C10-adrenergic receptor into five different amino acids. In analogy with the effect of similar mutations in the alpha 1B- and beta 2-adrenergic receptors, these substitutions resulted in two major biochemical modifications: 1) increased constitutive activity of the alpha 2-adrenergic receptor leading to agonist-independent inhibition of adenylyl cyclase and 2) increased affinity of the receptor for binding agonist but not antagonists. The increased constitutive activity of the mutated alpha 2-adrenergic receptors could be inhibited by pertussis toxin, clearly indicating that it results from spontaneous ligand-independent receptor coupling to Gi. In contrast, the increased affinity of the mutant receptors for binding agonists was unaffected by pertussis toxin treatment, indicating that this is an inherent property of the receptors not dependent on interaction with Gi. Coexpression of the receptor mutants with the receptor-specific kinase, beta ARK1, indicated that the constitutively active alpha 2-adrenergic receptors are substrates for beta-adrenergic receptor kinase (beta ARK)-mediated phosphorylation even in the absence of agonist. These findings strengthen the idea that constitutively active adrenergic receptors mimic the "active" state of a G protein-coupled receptor adopting conformations similar to those induced by agonist when it binds to wild type receptors. In addition, these results extend the notion that in the adrenergic receptor family the C-terminal portion of the third intracellular loop plays a general role in the processes involved in receptor activation.
Resumo:
Regulation of renal Na(+) transport is essential for controlling blood pressure, as well as Na(+) and K(+) homeostasis. Aldosterone stimulates Na(+) reabsorption by the Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) and by the epithelial Na(+) channel (ENaC) in the late DCT, connecting tubule, and collecting duct. Aldosterone increases ENaC expression by inhibiting the channel's ubiquitylation and degradation; aldosterone promotes serum-glucocorticoid-regulated kinase SGK1-mediated phosphorylation of the ubiquitin-protein ligase Nedd4-2 on serine 328, which prevents the Nedd4-2/ENaC interaction. It is important to note that aldosterone increases NCC protein expression by an unknown post-translational mechanism. Here, we present evidence that Nedd4-2 coimmunoprecipitated with NCC and stimulated NCC ubiquitylation at the surface of transfected HEK293 cells. In Xenopus laevis oocytes, coexpression of NCC with wild-type Nedd4-2, but not its catalytically inactive mutant, strongly decreased NCC activity and surface expression. SGK1 prevented this inhibition in a kinase-dependent manner. Furthermore, deficiency of Nedd4-2 in the renal tubules of mice and in cultured mDCT(15) cells upregulated NCC. In contrast to ENaC, Nedd4-2-mediated inhibition of NCC did not require the PY-like motif of NCC. Moreover, the mutation of Nedd4-2 at either serine 328 or 222 did not affect SGK1 action, and mutation at both sites enhanced Nedd4-2 activity and abolished SGK1-dependent inhibition. Taken together, these results suggest that aldosterone modulates NCC protein expression via a pathway involving SGK1 and Nedd4-2 and provides an explanation for the well-known aldosterone-induced increase in NCC protein expression.