960 resultados para Protein kinase C
Resumo:
Dun1p and Rad53p of the budding yeast Saccharomyces cerevisiae are members of a conserved family of cell cycle checkpoint protein kinases that contain forkhead-associated (FHA) domains. Here, we demonstrate that these FHA domains contain 130-140 residues, and are thus considerably larger than previously predicted by sequence comparisons (55-75 residues), In vivo, expression of the proteolytically defined Dun1p FHA domain, but not a fragment containing only the predicted domain boundaries, inhibited the transcriptional induction of repair genes following replication blocks, This indicates that the non-catalytic FI-IA domain plays an important role in the transcriptional function of the Dun1p protein kinase. (C) 2000 Federation of European Biochemical Societies.
Resumo:
The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. The GlyR comprises a pentameric complex that forms a chloride-selective transmembrane channel, which is predominantly expressed in the spinal cord and brain stem. We review the pharmacological and physiological properties of the GlyR and relate this information to more recent insights that have been obtained through the cloning and recombinant expression of the GlyR subunits. We also discuss insights into our understanding of GlyR structure and function that have been obtained by the genetic characterisation of various heritable disorders of glycinergic neurotransmission. (C) 1997 Elsevier Science Inc.
Resumo:
The Egr proteins, Egr-1, Egr-2, Egr-3 and Egr-4, are closely related members of a subclass of immediate early gene-encoded, inducible transcription factors. They share a highly homologous DNA-binding domain which recognises an identical DNA response element. In addition, they have several less-well conserved structural features in common. As immediate early proteins, the Egr transcription factors are rapidly induced by diverse extracellular stimuli within the nervous system in a discretely controlled manner. The basal expression of the Egr proteins in the developing and adult rat brain and the induction of Egr proteins by neurotransmitter analogue stimulation, physiological mimetic and brain injury paradigms is reviewed. We review evidence indicating that Egr proteins are subject to tight differential control through diverse mechanisms at several levels of regulation. These include transcriptional, translational and posttranslational (including glycosylation, phosphorylation and redox) mechanisms and protein-protein interaction. Ultimately the differentially co-ordinated Egr response may lead to discrete effects on target gene expression. Some of the known target genes of Egr proteins and functions of the Egr proteins in different cell types are also highlighted. Future directions for research into the control and function of the different Egr proteins are also explored. (C) 1997 Elsevier Science Ltd.
Resumo:
Malignant melanoma is one of the most lethal cancers. Nowadays, several anti-melanoma therapies have been employed. However, the poor prognosis and/or the increased toxicity of those treatments clearly demonstrate the requirement of searching for new drugs or novel combined chemotherapeutic protocols, contemplating both effectiveness and low toxicity. Guanosine (Guo) has been used in combination with acriflavina to potentiate the latter`s antitumor activity, through still unknown mechanisms. Here, we show that Guo induces B16F10 melanoma cell differentiation, attested by growth arrest, dendrite-like outgrowth and increased melanogenesis, and also reduced motility. A sustained ERK 1/2 phosphorylation was observed after Guo treatment and ERK inhibition led to blockage of dendritogenesis. Intracellular cyclic AMP was not involved in ERK activation, since its levels remained unchanged. Protein kinase C (PKC), in contrast to phospholipase C (PLC), inhibition completely prevented ERK activation. While the classical melanoma differentiation agent forskolin activates cAMP-PKA-Raf-MEK-ERK pathway in B16F10 cells, here we suggest that a cAMP-independent, PKC-ERK axis is involved in Guo-induced B16F10 differentiation. Altogether, our results show that Guo acts as a differentiating agent, with cytostatic rather than cytotoxic properties, leading to a decreased melanoma malignancy. Thus, we propose that Guo may be envisaged in combination with lower doses of conventional anti-melanoma drugs, in an attempt to prevent or diminish their adverse effects. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In rats, phospholipase A(2) (PLA(2)) activity was found to be increased in the hippocampus immediately after training and retrieval of a contextual fear conditioning paradigm (step-down inhibitory avoidance [IA] task). In the present study we investigated whether PLA(2) is also activated in the cerebral cortex of rats in association with contextual fear learning and retrieval. We observed that IA training induces a rapid (immediately after training) and long-lasting (3 h after training) activation of PLA(2) in both frontal and parietal cortices. However, immediately after retrieval (measured 24 h after training), PLA(2) activity was increased just in the parietal cortex. These findings suggest that PLA(2) activity is differentially required in the frontal and parietal cortices for the mechanisms of contextual learning and retrieval. Because reduced brain PLA(2) activity has been reported in Alzheimer disease, our results suggest that stimulation of PLA(2) activity may offer new treatment strategies for this disease.
Resumo:
The physiological effects of nitroglycerin as a potent vasodilator have long been documented. However, the molecular mechanisms by which nitroglycerin exerts its biological functions are still a matter of intense debate. Enzymatic pathways converting nitroglycerin to vasoactive compounds have been identified, but none of them seems to fully account for the reported clinical observations. Here, we demonstrate that nitroglycerin triggers constitutive nitric oxide synthase (NOS) activation, which is a major Source of NO responsible for low-dose (1-10 nM) nitroglycerin-induced vasorelaxation. Our studies in cell cultures, isolated vessels, and whole animals identified endothelial NOS activation as a fundamental requirement for nitroglycerin action at pharmacologically relevant concentrations in WT animals.
Resumo:
Resveratrol is a stilbene compound found in grapes and other sources. In this study we examined the effects of trans-resveratrol (4.38-438 mu M/implant) in the vasculogenesis of yolk-sac membranes and its capacity to improve chick embryo growth. High concentrations of the stilbene (43.8-438 mu M) significantly inhibited early vessel formation, decreasing the percentage vitelline vessels of 3.5-day embryos by 50% compared to the control. In addition, basic fibroblast growth factor-stimulated vasculogenesis (140% of vessels as compared to control) was partially reversed by t-resveratrol (35% of inhibition) and treatments with cyclooxygenase inhibitors (acetylsalicylic acid and indomethacin) as well a protein-kinase C (PKC) activator (phorbol-12,13-dibutyrate) decreased the vessel number to 60%, 50%, and 44%, respectively. Treatments with t-resveratrol (4.38-43.8 mu M/implant) significantly increased the body length of embryos incubated in vitro uncoupled from any impairment in the body shape or detectable embryotoxic effect. We suggest that the antivasculogenic activity and the enhancement in embryonic growth promoted by non acute treatments with t-resveratrol were, at least in part, due to PKC inhibition. We suggest that t-resveratrol can be usable not only as a reliable functional nutriment, but also is useful for the development of prophylactic and/or therapeutic agents for treatment of angiogenic-degenerative diseases.
Resumo:
Background and purpose: Protein kinase (PK) A and the epsilon isoform of PKC (PKC epsilon) are involved in the development of hypernociception (increased sensitivity to noxious or innocuous stimuli) in several animal models of acute and persistent inflammatory pain. The present study evaluated the contribution of PKA and PKC epsilon to the development of prostaglandin E(2) (PGE(2))-induced mechanical hypernociception. Experimental approach: Prostaglandin E(2)-induced mechanical hypernociception was assessed by constant pressure rat paw test. The activation of PKA or PKC epsilon was evaluated by radioactive enzymic assay in the dorsal root ganglia (DRG) of sensory neurons from the hind paws. Key results: Hypernociception induced by PGE(2) (100 ng) by intraplantar (i.pl.) injection, was reduced by i.pl. treatment with inhibitors of PKA [A-kinase-anchoring protein St-Ht31 inhibitor peptide (AKAPI)], PKC epsilon (PKC epsilon I) or adenylyl cyclase. PKA activity was essential in the early phase of the induction of hypernociception, whereas PKC activity was involved in the maintenance of the later phase of hypernociception. In the DRG (L4-L5), activity of PKA increased at 30 min after injection of PGE(2) but PKC activity increased only after 180 min. Moreover, i.pl. injection of the catalytic subunit of PKA induced hypernociception which was markedly reduced by pretreatment with an inhibitor of PKC epsilon, while the hypernociception induced by paw injection of PKC epsilon agonist was not affected by an inhibitor of PKA (AKAPI). Conclusions and implications: Taken together, these findings are consistent with the suggestion that PKA activates PKC epsilon, which is a novel mechanism of interaction between these kinases during the development of PGE(2)-induced mechanical hypernociception.
Resumo:
We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phoxcontaining NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient. Blood pressure and oxidative stress (systemic and renal) were increased in TTRhRen mice (P < 0.05). This was associated with increased NADPH oxidase activation. Nox1 deficiency had no effect on the development of hypertension in TTRhRen mice. Phosphorylation of c-Src, mitogen-activated protein kinases, and focal adhesion kinase was significantly increased 2-to 3-fold in kidneys from TTRhRen mice. Activation of c-Src, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and focal adhesion kinase but not of extracellular signal regulated kinase 1/2 or extracellular signal regulated kinase 5, was reduced in TTRhRen/Nox1-deficient mice (P < 0.05). Expression of procollagen III was increased in TTRhRen and TTRhRen/Nox1-deficient mice versus control mice, whereas vascular cell adhesion molecule-1 was only increased in TTRhRen mice. Our findings demonstrate that, in Nox1-deficient TTRhRen mice, blood pressure is elevated despite reduced NADPH oxidase activation, decreased oxidative stress, and attenuated redox signaling. Our results suggest that Nox1-containing NADPH oxidase plays a key role in the modulation of systemic and renal oxidative stress and redox-dependent signaling but not in the elevation of blood pressure in a model of chronic angiotensin II-dependent hypertension.
Resumo:
Aims: Many fundamental pharmacological studies in pain and inflammation have been performed on rats. However, the pharmacological findings were generally not extended to other species in order to increase their predictive therapeutic value. We studied acute and chronic inflammatory nociceptive sensitisation of mouse hind paws by prostaglandin E(2) (PGE(2)) or dopamine (DA), as previously described in rats. We also investigated the participation of the signalling pathways in acute and persistent sensitisation. Main methods: Mechanical sensitisation (hypernociception) induced by intraplantar administrations of PGE(2) or DA was evaluated with an electronic pressure meter. The signalling pathways were pharmacologically investigated with the pre-administration of adenylyl cyclase (AC), cAMP-dependent protein kinase (PKA), protein kinase C epsilon (PKC epsilon), and the extracellular signal-related kinase (ERK) inhibitors. Key findings: Single or 14 days of successive intraplantar injections of PGE(2) or DA-induced acute and persistent hypernociception (lasting for more than 30 days), respectively. The involvement of AC, PKA or PKC epsilon was observed in the acute hypernociception induced by PGE(2), while PKA or PKC epsilon were continuously activated during the period of persistent hypernociception. The acute hypernociception induced by DA involves activation of ERK, PKC epsilon, AC or PKA, while persistent hypernociception implicated ERK activation, but not PKA, PKC epsilon or AC. Significance: In mice, acute and persistent paw sensitisation involves the different activation of kinases, as previously described for rats. This study opens the possibility of comparing pharmacological approaches in both species to further understand acute and chronic inflammatory sensitisation, and possibly associated genetic manipulations. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
LH increases the intracellular Ca(2+) concentration ([Ca(2+)](i)) in mice Leydig cells, in a process triggered by calcium influx through T-type Ca(2+) channels. Here we show that LH modulates both T-type Ca(2+) currents and [Ca(2+)]; transients through the effects of PKA and PKC. LH increases the peak calcium current (at -20 mV) by 40%. A similar effect is seen with PMA. The effect of LH is completely blocked by the PKA inhibitors H89 and a synthetic inhibitory peptide (IP-20), but only partially by chelerythrine (PKC inhibitor). LH and the blockers induced only minor changes in the voltage dependence of activation, inactivation or deactivation of the currents. Staurosporine (blocker of PKA and PKC) impaired the [Ca(2+)](i) changes induced by LH. A similar effect was seen with H89. Although PMA slowly increased the [Ca(2+)](i) the subsequent addition of LH still triggered the typical transients in [Ca(2+)](i). Chelerythrine also does not avoid the Ca(2+) transients, showing that blockage of PKC is not sufficient to inhibit the LH induced [Ca(2+)](i) rise. In summary, these two kinases are not only directly involved in promoting testosterone synthesis but also act on the overall calcium dynamics in Leydig cells, mostly through the activation of PKA by LH. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The vascular manifestations associated with diabetes mellitus (DM) result from the dysfunction of several vascular physiology components mainly involving the endothelium, vascular smooth muscle and platelets. It is also known that hyperglycemia-induced oxidative stress plays a role in the development of this dysfunction. This review considers the basic physiology of the endothelium, especially related to the synthesis and function of nitric oxide. We also discuss the pathophysiology of vascular disease associated with DM. This includes the role of hyperglycemia in the induction of oxidative stress and the role of advanced glycation end-products. We also consider therapeutic strategies.
Resumo:
We investigated the effects of gamma-radiation on cells isolated from the longitudinal smooth muscle layer of the guinea pig ileum, a relatively radioresistant tissue. Single doses (up to 50 Gy) reduced the amount of sarcoplasmatic reticulum and condensed the myofibrils, as shown by electron microscopy 3 days post-irradiation. After that, contractility of smooth muscle strips was reduced. Ca(2+) handling was altered after irradiation, as shown in fura-2 loaded cells, with elevated basal intracellular Ca(2+), reduced amount of intrareticular Ca(2+), and reduced capacitive Ca(2+) entry. Radiation also induced apoptosis, judged from flow cytometry of cells loaded with proprium iodide. Electron microscopy showed that radiation caused condensation of chromatin in dense masses around the nuclear envelope, the presence of apoptotic bodies, fragmentation of the nucleus, detachment of cells from their neighbors, and reductions in cell volume. Radiation also caused activation of caspase 12. Apoptosis was reduced by the administration of the caspase inhibitor Z-Val-Ala-Asp-fluoromethyl-ketone methyl ester (Z-VAD-FIVIK) during the 3 day period after irradiation, and by the chelator of intracellular Ca(2+), 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetraacetic acid (BAPTA), from 1 h before until 2 h after irradiation. BAPTA also reduced the effects of radiation on contractility, basal intracellular Ca(2+), amount of intrareticular Ca(2+), capacitative Ca(2+) entry, and apoptosis. In conclusion, the effects of gamma radiation on contractility, Ca(2+) handling, and apoptosis appear due to a toxic action of intracellular Ca(2+). Ca(2+)-induced damage to the sarcoplasmatic reticulum seems a key event in impaired Ca(2+) handling and apoptosis induced by gamma-radiation. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nitric oxide has been reported to modulate fever in the brain. However, the sites where NO exerts this modulation remain somewhat unclear. Locus coeruleus (LC) neurons express not only nitric oxide synthase (NOS) but also soluble guanylyl cyclase (sGC). In the present study, we evaluated in vivo and ex vivo the putative role of the LC NO-cGMP pathway in fever. To this end, deep body temperature was measured before and after pharmacological modulations of the pathway. Moreover, nitrite/nitrate (NOx) and cGMP levels in the LC were assessed. Conscious rats were microinjected within the LC with a non-selective NOS inhibitor (NG-monomethyl-l-arginine acetate), a NO donor (NOC12), a sGC inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) or a cGMP analogue (8-bromo-cGMP) and injected intraperitoneally with endotoxin. Inhibition of NOS or sGC before endotoxin injection significantly increased the latency to the onset of fever. During the course of fever, inhibition of NOS or sGC attenuated the febrile response, whereas microinjection of NOC12 or 8-bromo-cGMP increased the response. These findings indicate that the LC NO-cGMP pathway plays a propyretic role. Furthermore, we observed a significant increase in NOx and cGMP levels, indicating that the febrile response to endotoxin is accompanied by stimulation of the NO-cGMP pathway in the LC.
Resumo:
Pulmonary vascular remodeling is an important pathological feature of pulmonary hypertension, leading to increased pulmonary vascular resistance and reduced compliance. It involves thickening of all three layers of the blood vessel wall (due to hypertrophy and/or hyperplasia of the predominant cell type within each layer), as well as extracellular matrix deposition. Neomuscularisation of non-muscular arteries and formation of plexiform and neointimal lesions also occur. Stimuli responsible for remodeling involve transmural pressure, stretch, shear stress, hypoxia, various mediators [angiotensin II, endothelin (ET)-1, 5-hydroxytryptamine, growth factors, and inflammatory cytokines], increased serine elastase activity, and tenascin-C. In addition, there are reductions in the endothelium-derived antimitogenic substances, nitric oxide, and prostacyclin. Intracellular signalling mechanisms involved in pulmonary vascular remodeling include elevations in intracellular Ca2+ and activation of the phosphatidylinositol pathway, protein kinase C, and mitogen-activated protein kinase. In animal models of pulmonary hypertension, various drugs have been shown to attenuate pulmonary vascular remodeling. These include angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, ET receptor antagonists, ET-converting enzyme inhibitors, nitric oxide, phosphodiesterase 5 inhibitors, prostacyclin, Ca2+-channel antagonists, heparin, and serine elastase inhibitors. Inhibition of remodeling is generally accompanied by reductions in pulmonary artery pressure. The efficacy of some of the drugs varies, depending on the animal model of the disease. In view of the complexity of the remodeling process and the diverse aetiology of pulmonary hypertension in humans, it is to be anticipated that successful anti-remodeling therapy in the clinic will require a range of different drug options. (C) 2001 Elsevier Science Inc. All rights reserved.