969 resultados para Production processes
Resumo:
A case of long-range transport of a biomass burning plume from Alaska to Europe is analyzed using a Lagrangian approach. This plume was sampled several times in the free troposphere over North America, the North Atlantic and Europe by three different aircraft during the IGAC Lagrangian 2K4 experiment which was part of the ICARTT/ITOP measurement intensive in summer 2004. Measurements in the plume showed enhanced values of CO, VOCs and NOy, mainly in form of PAN. Observed O3 levels increased by 17 ppbv over 5 days. A photochemical trajectory model, CiTTyCAT, was used to examine processes responsible for the chemical evolution of the plume. The model was initialized with upwind data and compared with downwind measurements. The influence of high aerosol loading on photolysis rates in the plume was investigated using in situ aerosol measurements in the plume and lidar retrievals of optical depth as input into a photolysis code (Fast-J), run in the model. Significant impacts on photochemistry are found with a decrease of 18% in O3 production and 24% in O3 destruction over 5 days when including aerosols. The plume is found to be chemically active with large O3 increases attributed primarily to PAN decomposition during descent of the plume toward Europe. The predicted O3 changes are very dependent on temperature changes during transport and also on water vapor levels in the lower troposphere which can lead to O3 destruction. Simulation of mixing/dilution was necessary to reproduce observed pollutant levels in the plume. Mixing was simulated using background concentrations from measurements in air masses in close proximity to the plume, and mixing timescales (averaging 6.25 days) were derived from CO changes. Observed and simulated O3/CO correlations in the plume were also compared in order to evaluate the photochemistry in the model. Observed slopes change from negative to positive over 5 days. This change, which can be attributed largely to photochemistry, is well reproduced by multiple model runs even if slope values are slightly underestimated suggesting a small underestimation in modeled photochemical O3 production. The possible impact of this biomass burning plume on O3 levels in the European boundary layer was also examined by running the model for a further 5 days and comparing with data collected at surface sites, such as Jungfraujoch, which showed small O3 increases and elevated CO levels. The model predicts significant changes in O3 over the entire 10 day period due to photochemistry but the signal is largely lost because of the effects of dilution. However, measurements in several other BB plumes over Europe show that O3 impact of Alaskan fires can be potentially significant over Europe.
Resumo:
Global dust trajectories indicate that significant quantities of aeolian-transported iron oxides originate in contemporary dryland areas. One potential source is the iron-rich clay coatings that characterize many sand-sized particles in desert dunefields. This paper uses laboratory experiments to determine the rate at which these coatings can be removed from dune sands by aeolian abrasion. The coatings impart a red colour to the grains to which previous researchers have assigned variable geomorphological significance. The quantities or iron removed during a 120 hour abrasion experiment are small (99 mg kg(-1)) and difficult to detect by eye; however, high resolution spectroscopy clearly indicates that ferric oxides are released during abrasion and the reflectance of the particles alters. One of the products of aeolian abrasion is fine particles (<10 mum diameter) with the potential for long distance transport. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Airborne dust is of concern due to hazards in the localities affected by erosion, transport and deposition, but it is also of global concern due to uncertainties over its role in radiative forcing of climate. In order to model the environmental impact of dust, we need a better knowledge of sources and transport processes. Satellite remote sensing has been instrumental in providing this knowledge, through long time series of observations of atmospheric dust transport. Three remote sensing methodologies have been used, and are reviewed briefly in this paper. Firstly the use of observations from the Total Ozone Mapping Spectrometer (TOMS), secondly the use of the Infrared Difference Dust Index (IDDI) from Meterosat infrared data, thirdly the use of MODIS images from the rapid response system. These data have highlighted the major global sources of dust, mist of which are associated with endoreic drainage basins in deserts, which held lakes during Quaternary humid climate phases, and identified the Bodele Depression in Tchad as the dustiest place on Earth.
Resumo:
Children with English as a second language (L2) with exposure of 18 months or less exhibit similar difficulties to children with Specific Language Impairment in tense marking, a marker of language impairment for English. This paper examines whether L2 children with longer exposure converge with their monolingual peers in the production of tense marking. 38 Turkish-English L2 children with a mean age of 7;8 and 33 monolingual age-matched controls completed the screening test of the Test of Early Grammatical Impairment (TEGI). The L2 children as a group were as accurate as the controls in the production of -ed, but performed significantly lower than the controls in the production of third person –s. Age and YoE affected the children’s performance. The highest age-expected performance on the TEGI was attested in eight and nine year-old children who had 4-6 YoE. L1 and L2 children performed better in regular compared to irregular verbs, but L2 children overregularized more than L1 children and were less sensitive to the phonological properties of verbs. The results show that tense marking and the screening test of the TEGI may be promising for differential diagnosis in eight and nine year-old L2 children with at least four YoE.
Resumo:
Managing ecosystems to ensure the provision of multiple ecosystem services is a key challenge for applied ecology. Functional traits are receiving increasing attention as the main ecological attributes by which different organisms and biological communities influence ecosystem services through their effects on underlying ecosystem processes. Here we synthesize concepts and empirical evidence on linkages between functional traits and ecosystem services across different trophic levels. Most of the 247 studies reviewed considered plants and soil invertebrates, but quantitative trait–service associations have been documented for a range of organisms and ecosystems, illustrating the wide applicability of the trait approach. Within each trophic level, specific processes are affected by a combination of traits while particular key traits are simultaneously involved in the control of multiple processes. These multiple associations between traits and ecosystem processes can help to identify predictable trait–service clusters that depend on several trophic levels, such as clusters of traits of plants and soil organisms that underlie nutrient cycling, herbivory, and fodder and fibre production. We propose that the assessment of trait–service clusters will represent a crucial step in ecosystem service monitoring and in balancing the delivery of multiple, and sometimes conflicting, services in ecosystem management.
Resumo:
This article is a commentary on several research studies conducted on the prospects for aerobic rice production systems that aim at reducing the demand for irrigation water which in certain major rice producing areas of the world is becoming increasingly scarce. The research studies considered, as reported in published articles mainly under the aegis of the International Rice Research Institute (IRRI), have a narrow scope in that they test only 3 or 4 rice varieties under different soil moisture treatments obtained with controlled irrigation, but with other agronomic factors of production held as constant. Consequently, these studies do not permit an assessment of the interactions among agronomic factors that will be of critical significance to the performance of any production system. Varying the production factor of "water" will seriously affect also the levels of the other factors required to optimise the performance of a production system. The major weakness in the studies analysed in this article originates from not taking account of the interactions between experimental and non-experimental factors involved in the comparisons between different production systems. This applies to the experimental field design used for the research studies as well as to the subsequent statistical analyses of the results. The existence of such interactions is a serious complicating element that makes meaningful comparisons between different crop production systems difficult. Consequently, the data and conclusions drawn from such research readily become biased towards proposing standardised solutions for possible introduction to farmers through a linear technology transfer process. Yet, the variability and diversity encountered in the real-world farming environment demand more flexible solutions and approaches in the dissemination of knowledge-intensive production practices through "experiential learning" types of processes, such as those employed by farmer field schools. This article illustrates, based on expertise of the 'system of rice intensification' (SRI), that several cost-effective and environment-friendly agronomic solutions to reduce the demand for irrigation water, other than the asserted need for the introduction of new cultivars, are feasible. Further, these agronomic Solutions can offer immediate benefits of reduced water requirements and increased net returns that Would be readily accessible to a wide range of rice producers, particularly the resource poor smallholders. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study begins to redress our lack of knowledge of the interactions between colonial hosts and their parasites by focusing on a novel host-parasite system. Investigations of freshwater bryozoan populations revealed that infection by myxozoan parasites is widespread. Covert infections were detected in all 5 populations studied and were often at high prevalence while overt infections were observed in only 1. Infections were persistent in populations subject to temporal sampling. Negative effects of infection were identified but virulence was low. Infection did not induce mortality in the environmental conditions studied. However, the production of statoblasts (dormant propagules) was greatly reduced in bryozoans with overt infections in comparison to uninfected bryozoans. Overtly-infected bryozoans also grew more slowly and had low fission rates relative to colonies lacking overt infection. Bryozoans with covert infections were smaller than uninfected bryozoans. High levels of vertical transmission were achieved through colony fission and the infection of statoblasts. Increased fission rates may be a strategy for hosts to escape from parasites but the parasite can also exploit the fragmentation of colonial hosts to gain vertical transmission and dispersal. Our study provides evidence that opportunities and constraints for host-parasite co-evolution can be highly dependent on organismal body plans and that low virulence may be associated with exploitation of colonial hosts by endoparasites.
Resumo:
Homopolymerization of alkylarylcarbenes derived from diazirine monomers that featured benzyl alcohol or phenol residues was found to lead to the production of soluble hyperbranched poly(aryl ether)s. The polymerization process was influenced by the solvents employed, monomer concentration, and the reaction time. An increase in the monomer concentration and reaction time was found to lead to an increase in the molecular weight characteristics of the resulting polymers as determined by gel permeation chromatography (GPC). The composition and architecture of the polyethers were determined by nuclear magnetic resonance (NMR) spectroscopic analysis and were found to be highly complex and dependent on the structure of the monomers used. All of the polymers were found to contain ether linkages formed via carbene insertion into O-H bonds, although polymers derived from phenolic carbenes also contained linkages arising from C-alkylation.
Resumo:
Design management research usually deals with the processes within the professional design team and yet, in the UK, the volume of the total project information produced by the specialist trade contractors equals or exceeds that produced by the design team. There is a need to understand the scale of this production task and to plan and manage it accordingly. The model of the process on which the plan is to be based, while generic, must be sufficiently robust to cover the majority of instances. An approach using design elements, in sufficient depth to possibly develop tools for a predictive model of the process, is described. The starting point is that each construction element and its components have a generic sequence of design activities. Specific requirements tailor the element's application to the building. Then there are the constraints produced due to the interaction with other elements. Therefore, the selection of a component within the element may impose a set of constraints that will affect the choice of other design elements. Thus, a design decision can be seen as an interrelated element-constraint-element (ECE) sub-net. To illustrate this approach, an example of the process within precast concrete cladding has been used.
Resumo:
Design management research usually deals with the processes within the professional design team and yet, in the UK, the volume of the total project information produced by the specialist trade contractors equals or exceeds that produced by the design team. There is a need to understand the scale of this production task and to plan and manage it accordingly. The model of the process on which the plan is to be based, while generic, must be sufficiently robust to cover the majority of instances. An approach using design elements, in sufficient depth to possibly develop tools for a predictive model of the process, is described. The starting point is that each construction element and its components have a generic sequence of design activities. Specific requirements tailor the element's application to the building. Then there are the constraints produced due to the interaction with other elements. Therefore, the selection of a component within the element may impose a set of constraints that will affect the choice of other design elements. Thus, a design decision can be seen as an interrelated element-constraint-element (ECE) sub-net. To illustrate this approach, an example of the process within precast concrete cladding has been used.
Resumo:
Dietary antioxidants can affect cellular processes relevant to chronic inflammatory diseases such as atherosclerosis. We have used non- standard techniques to quantify effects of the antioxidant soy isoflavones genistein and daidzein on translocation of Nuclear Factor-KB (NF-KB) and nitric oxide (NO) production, which are important in these diseases. Translocation was quantified using confocal immunofluoresecence microscopy and ratiometric image analysis. NO was quantified by an electrochemical method after reduction of its oxidation products in cell culture supernatants. Activation of the RAW 264.7 murine monocyte/macrophage cell line increased the ratio of nuclear to cytoplasmic immunostaining for NF-kB. The increase was exacerbated by pre-treatment with genistein or daidzein. To show that decreases could also be detected, pre-treatment with the pine bark extract Pycnogenol (R) r was examined, and found to reduce translocation. NO production was also increased by activation, but was reduced by pre-treatment with genistein or daidzein. In the EA. hy926 human endothelial cell line, constitutive production was detectable and was increased by thrombin. The confocal and electrochemical methods gave data that agreed with results obtained using the established electromobility shift and Griess assays, but were more sensitive, more convenient, gave more detailed information and avoided the use of radioisotopes.
Resumo:
We present an extensive thermodynamic analysis of a hysteresis experiment performed on a simplified yet Earth-like climate model. We slowly vary the solar constant by 20% around the present value and detect that for a large range of values of the solar constant the realization of snowball or of regular climate conditions depends on the history of the system. Using recent results on the global climate thermodynamics, we show that the two regimes feature radically different properties. The efficiency of the climate machine monotonically increases with decreasing solar constant in present climate conditions, whereas the opposite takes place in snowball conditions. Instead, entropy production is monotonically increasing with the solar constant in both branches of climate conditions, and its value is about four times larger in the warm branch than in the corresponding cold state. Finally, the degree of irreversibility of the system, measured as the fraction of excess entropy production due to irreversible heat transport processes, is much higher in the warm climate conditions, with an explosive growth in the upper range of the considered values of solar constants. Whereas in the cold climate regime a dominating role is played by changes in the meridional albedo contrast, in the warm climate regime changes in the intensity of latent heat fluxes are crucial for determining the observed properties. This substantiates the importance of addressing correctly the variations of the hydrological cycle in a changing climate. An interpretation of the climate transitions at the tipping points based upon macro-scale thermodynamic properties is also proposed. Our results support the adoption of a new generation of diagnostic tools based on the second law of thermodynamics for auditing climate models and outline a set of parametrizations to be used in conceptual and intermediate-complexity models or for the reconstruction of the past climate conditions. Copyright © 2010 Royal Meteorological Society
Resumo:
Executive summary Nature of the problem (science/management/policy) • Freshwater ecosystems play a key role in the European nitrogen (N) cycle, both as a reactive agent that transfers, stores and processes N loadings from the atmosphere and terrestrial ecosystems, and as a natural environment severely impacted by the increase of these loadings. Approaches • This chapter is a review of major processes and factors controlling N transport and transformations for running waters, standing waters, groundwaters and riparian wetlands. Key findings/state of knowledge • The major factor controlling N processes in freshwater ecosystems is the residence time of water, which varies widely both in space and in time, and which is sensitive to changes in climate, land use and management. • The effects of increased N loadings to European freshwaters include acidification in semi-natural environments, and eutrophication in more disturbed ecosystems, with associated loss of biodiversity in both cases. • An important part of the nitrogen transferred by surface waters is in the form of organic N, as dissolved organic N (DON) and particulate organic N (PON). This part is dominant in semi-natural catchments throughout Europe and remains a significant component of the total N load even in nitrate enriched rivers. • In eutrophicated standing freshwaters N can be a factor limiting or co-limiting biological production, and control of both N and phosphorus (P) loading is oft en needed in impacted areas, if ecological quality is to be restored. Major uncertainties/challenges • The importance of storage and denitrifi cation in aquifers is a major uncertainty in the global N cycle, and controls in part the response of catchments to land use or management changes. In some aquifers, the increase of N concentrations will continue for decades even if efficient mitigation measures are implemented now. • Nitrate retention by riparian wetlands has oft en been highlighted. However, their use for mitigation must be treated with caution, since their effectiveness is difficult to predict, and side effects include increased DON emissions to adjacent open waters, N2O emissions to the atmosphere, and loss of biodiversity. • In fact, the character and specific spatial origins of DON are not fully understood, and similarly the quantitative importance of indirect N2O emissions from freshwater ecosystems as a result of N leaching losses from agricultural soils is still poorly known at the regional scale. • These major uncertainties remain due to the lack of adequate monitoring (all forms of N at a relevant frequency), especially – but not only – in the southern and eastern EU countries. Recommendations (research/policy) • The great variability of transfer pathways, buffering capacity and sensitivity of the catchments and of the freshwater ecosystems calls for site specific mitigation measures rather than standard ones applied at regional to national scale. • The spatial and temporal variations of the N forms, the processes controlling the transport and transformation of N within freshwaters, require further investigation if the role of N in influencing freshwater ecosystem health is to be better understood, underpinning the implementation of the EU Water Framework Directive for European freshwaters.
Resumo:
The effect of episodic drought on dissolved organic carbon (DOC) dynamics in peatlands has been the subject of considerable debate, as decomposition and DOC production is thought to increase under aerobic conditions, yet decreased DOC concentrations have been observed during drought periods. Decreased DOC solubility due to drought-induced acidification driven by sulphur (S) redox reactions has been proposed as a causal mechanism; however evidence is based on a limited number of studies carried out at a few sites. To test this hypothesis on a range of different peats, we carried out controlled drought simulation experiments on peat cores collected from six sites across Great Britain. Our data show a concurrent increase in sulphate (SO4) and a decrease in DOC across all sites during simulated water table draw-down, although the magnitude of the relationship between SO4 and DOC differed between sites. Instead, we found a consistent relationship across all sites between DOC decrease and acidification measured by the pore water acid neutralising capacity (ANC). ANC provided a more consistent measure of drought-induced acidification than SO4 alone because it accounts for differences in base cation and acid anions concentrations between sites. Rewetting resulted in rapid DOC increases without a concurrent increase in soil respiration, suggesting DOC changes were primarily controlled by soil acidity not soil biota. These results highlight the need for an integrated analysis of hydrologically driven chemical and biological processes in peatlands to improve our understanding and ability to predict the interaction between atmospheric pollution and changing climatic conditions from plot to regional and global scales.
Resumo:
The diversification of life involved enormous increases in size and complexity. The evolutionary transitions from prokaryotes to unicellular eukaryotes to metazoans were accompanied by major innovations inmetabolicdesign.Hereweshowthat thescalingsofmetabolic rate, population growth rate, and production efficiency with body size have changed across the evolutionary transitions.Metabolic rate scales with body mass superlinearly in prokaryotes, linearly in protists, and sublinearly inmetazoans, so Kleiber’s 3/4 power scaling law does not apply universally across organisms. The scaling ofmaximum population growth rate shifts from positive in prokaryotes to negative in protists and metazoans, and the efficiency of production declines across these groups.Major changes inmetabolic processes duringtheearlyevolutionof life overcameexistingconstraints, exploited new opportunities, and imposed new constraints. The 3.5 billion year history of life on earth was characterized by