908 resultados para Prediction of random e_ects
Resumo:
Multilocus sequence analysis (MLSA) based on recN, rpoA and thdF genes was done on more than 30 species of the family Enterobacteriaceae with a focus on Cronobacter and the related genus Enterobacter. The sequences provide valuable data for phylogenetic, taxonomic and diagnostic purposes. Phylogenetic analysis showed that the genus Cronobacter forms a homogenous cluster related to recently described species of Enterobacter, but distant to other species of this genus. Combining sequence information on all three genes is highly representative for the species' %GC-content used as taxonomic marker. Sequence similarity of the three genes and even of recN alone can be used to extrapolate genetic similarities between species of Enterobacteriaceae. Finally, the rpoA gene sequence, which is the easiest one to determine, provides a powerful diagnostic tool to identify and differentiate species of this family. The comparative analysis gives important insights into the phylogeny and genetic relatedness of the family Enterobacteriaceae and will serve as a basis for further studies and clarifications on the taxonomy of this large and heterogeneous family.
Resumo:
Determination of somatic cell count (SCC) is used worldwide in dairy practice to describe the hygienic status of the milk and the udder health of cows. When SCC is tested on a quarter level to detect single quarters with high SCC levels of cows for practical reasons, mostly foremilk samples after prestimulation (i.e. cleaning of the udder) are used. However, SCC is usually different in different milk fractions. Therefore, the goal of this study was the investigation of the use of foremilk samples for the estimation of total quarter SCC. A total of 378 milkings in 19 dairy cows were performed with a special milking device to drain quarter milk separately. Foremilk samples were taken after udder stimulation and before cluster attachment. SCC was measured in foremilk samples and in total quarter milk. Total quarter milk SCC could not be predicted precisely from foremilk SCC measurements. At relatively high foremilk SCC levels (>300 x 10(3) cells/ml) foremilk SCC were higher than total quarter milk. At around (50-300) x 10(3) cells/ml foremilk and total quarter SCC did not differ considerably. Most interestingly, if foremilk SCC was lower than 50 x 10(3) cells/ml the total quarter SCC was higher than foremilk SCC. In addition, individual cows showed dramatic variations in foremilk SCC that were not very well related to total quarter milk SCC. In conclusion, foremilk samples are useful to detect high quarter milk SCC to recognize possibly infected quarters, only if precise cell counts are not required. However, foremilk samples can be deceptive if very low cell numbers are to be detected.
Resumo:
Ein auf Basis von Prozessdaten kalibriertes Viskositätsmodell wird vorgeschlagen und zur Vorhersage der Viskosität einer Polyamid 12 (PA12) Kunststoffschmelze als Funktion von Zeit, Temperatur und Schergeschwindigkeit angewandt. Im ersten Schritt wurde das Viskositätsmodell aus experimentellen Daten abgeleitet. Es beruht hauptsächlich auf dem drei-parametrigen Ansatz von Carreau, wobei zwei zusätzliche Verschiebungsfaktoren eingesetzt werden. Die Temperaturabhängigkeit der Viskosität wird mithilfe des Verschiebungsfaktors aT von Arrhenius berücksichtigt. Ein weiterer Verschiebungsfaktor aSC (Structural Change) wird eingeführt, der die Strukturänderung von PA12 als Folge der Prozessbedingungen beim Lasersintern beschreibt. Beobachtet wurde die Strukturänderung in Form einer signifikanten Viskositätserhöhung. Es wurde geschlussfolgert, dass diese Viskositätserhöhung auf einen Molmassenaufbau zurückzuführen ist und als Nachkondensation verstanden werden kann. Abhängig von den Zeit- und Temperaturbedingungen wurde festgestellt, dass die Viskosität als Folge des Molmassenaufbaus exponentiell gegen eine irreversible Grenze strebt. Die Geschwindigkeit dieser Nachkondensation ist zeit- und temperaturabhängig. Es wird angenommen, dass die Pulverbetttemperatur einen Molmassenaufbau verursacht und es damit zur Kettenverlängerung kommt. Dieser fortschreitende Prozess der zunehmenden Kettenlängen setzt molekulare Beweglichkeit herab und unterbindet die weitere Nachkondensation. Der Verschiebungsfaktor aSC drückt diese physikalisch-chemische Modellvorstellung aus und beinhaltet zwei zusätzliche Parameter. Der Parameter aSC,UL entspricht der oberen Viskositätsgrenze, wohingegen k0 die Strukturänderungsrate angibt. Es wurde weiterhin festgestellt, dass es folglich nützlich ist zwischen einer Fließaktivierungsenergie und einer Strukturänderungsaktivierungsenergie für die Berechnung von aT und aSC zu unterscheiden. Die Optimierung der Modellparameter erfolgte mithilfe eines genetischen Algorithmus. Zwischen berechneten und gemessenen Viskositäten wurde eine gute Übereinstimmung gefunden, so dass das Viskositätsmodell in der Lage ist die Viskosität einer PA12 Kunststoffschmelze als Folge eines kombinierten Lasersinter Zeit- und Temperatureinflusses vorherzusagen. Das Modell wurde im zweiten Schritt angewandt, um die Viskosität während des Lasersinter-Prozesses in Abhängigkeit von der Energiedichte zu berechnen. Hierzu wurden Prozessdaten, wie Schmelzetemperatur und Belichtungszeit benutzt, die mithilfe einer High-Speed Thermografiekamera on-line gemessen wurden. Abschließend wurde der Einfluss der Strukturänderung auf das Viskositätsniveau im Prozess aufgezeigt.
Resumo:
'Early-onset' studies have shown that symptomatic response often occurs early and that early symptomatic response is predictive for later outcome. Limiting factors of these studies include the restriction on symptomatic outcome, the inclusion of mostly moderately ill patients, and the use of various antipsychotics.
Resumo:
BACKGROUND Timing is critical for efficient hepatitis A vaccination in high endemic areas as high levels of maternal IgG antibodies against the hepatitis A virus (HAV) present in the first year of life may impede the vaccine response. OBJECTIVES To describe the kinetics of the decline of anti-HAV maternal antibodies, and to estimate the time of complete loss of maternal antibodies in infants in León, Nicaragua, a region in which almost all mothers are anti-HAV seropositive. METHODS We collected cord blood samples from 99 healthy newborns together with 49 corresponding maternal blood samples, as well as further blood samples at 2 and 7 months of age. Anti-HAV IgG antibody levels were measured by enzyme immunoassay (EIA). We predicted the time when antibodies would fall below 10 mIU/ml, the presumed lowest level of seroprotection. RESULTS Seroprevalence was 100% at birth (GMC 8392 mIU/ml); maternal and cord blood antibody concentrations were similar. The maternal antibody levels of the infants decreased exponentially with age and the half-life of the maternal antibody was estimated to be 40 days. The relationship between the antibody concentration at birth and time until full waning was described as: critical age (months)=3.355+1.969 × log(10)(Ab-level at birth). The survival model estimated that loss of passive immunity will have occurred in 95% of infants by the age of 13.2 months. CONCLUSIONS Complete waning of maternal anti-HAV antibodies may take until early in the second year of life. The here-derived formula relating maternal or cord blood antibody concentrations to the age at which passive immunity is lost may be used to determine the optimal age of childhood HAV vaccination.
Resumo:
Radon plays an important role for human exposure to natural sources of ionizing radiation. The aim of this article is to compare two approaches to estimate mean radon exposure in the Swiss population: model-based predictions at individual level and measurement-based predictions based on measurements aggregated at municipality level. A nationwide model was used to predict radon levels in each household and for each individual based on the corresponding tectonic unit, building age, building type, soil texture, degree of urbanization, and floor. Measurement-based predictions were carried out within a health impact assessment on residential radon and lung cancer. Mean measured radon levels were corrected for the average floor distribution and weighted with population size of each municipality. Model-based predictions yielded a mean radon exposure of the Swiss population of 84.1 Bq/m(3) . Measurement-based predictions yielded an average exposure of 78 Bq/m(3) . This study demonstrates that the model- and the measurement-based predictions provided similar results. The advantage of the measurement-based approach is its simplicity, which is sufficient for assessing exposure distribution in a population. The model-based approach allows predicting radon levels at specific sites, which is needed in an epidemiological study, and the results do not depend on how the measurement sites have been selected.
Resumo:
BACKGROUND Peak levels of troponin T (TnT) reliably predict morbidity and mortality after cardiac surgery. However, the therapeutic window to manage CABG-related in-hospital complications may close before the peak is reached. We investigated whether early TnT levels correlate as well with complications after coronary artery bypass grafting (CABG) surgery. METHODS A 12 month consecutive series of patients undergoing elective isolated CABG procedures (mini-extra-corporeal circuit, Cardioplegic arrest) was analyzed. Logistic regression modeling was used to investigate whether TnT levels 6 to 8 hours after surgery were independently associated with in-hospital complications (either post-operative myocardial infarction, stroke, new-onset renal insufficiency, intensive care unit (ICU) readmission, prolonged ICU stay (>48 hours), prolonged need for vasopressors (>24 hours), resuscitation or death). RESULTS A total of 290 patients, including 36 patients with complications, was analyzed. Early TnT levels (odds ratio (OR): 6.8, 95% confidence interval (CI): 2.2-21.4, P=.001), logistic EuroSCORE (OR: 1.2, 95%CI: 1.0-1.3, P=.007) and the need for vasopressors during the first 6 postoperative hours (OR: 2.7, 95%CI: 1.0-7.1, P=.05) were independently associated with the risk of complications. With consideration of vasopressor use during the first 6 postoperative hours, the sum of specificity (0.958) and sensitivity (0.417) of TnT for subsequent complications was highest at a TnT cut-off value of 0.8 ng/mL. CONCLUSION Early TnT levels may be useful to guide ICU management of CABG patients. They predict clinically relevant complications within a potential therapeutic window, particularly in patients requiring vasopressors during the first postoperative hours, although with only moderate sensitivity.
Resumo:
The first section of this chapter starts with the Buffon problem, which is one of the oldest in stochastic geometry, and then continues with the definition of measures on the space of lines. The second section defines random closed sets and related measurability issues, explains how to characterize distributions of random closed sets by means of capacity functionals and introduces the concept of a selection. Based on this concept, the third section starts with the definition of the expectation and proves its convexifying effect that is related to the Lyapunov theorem for ranges of vector-valued measures. Finally, the strong law of large numbers for Minkowski sums of random sets is proved and the corresponding limit theorem is formulated. The chapter is concluded by a discussion of the union-scheme for random closed sets and a characterization of the corresponding stable laws.
Resumo:
Stochastic models for three-dimensional particles have many applications in applied sciences. Lévy–based particle models are a flexible approach to particle modelling. The structure of the random particles is given by a kernel smoothing of a Lévy basis. The models are easy to simulate but statistical inference procedures have not yet received much attention in the literature. The kernel is not always identifiable and we suggest one approach to remedy this problem. We propose a method to draw inference about the kernel from data often used in local stereology and study the performance of our approach in a simulation study.
Resumo:
OBJECTIVES This study sought to validate the Logistic Clinical SYNTAX (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery) score in patients with non-ST-segment elevation acute coronary syndromes (ACS), in order to further legitimize its clinical application. BACKGROUND The Logistic Clinical SYNTAX score allows for an individualized prediction of 1-year mortality in patients undergoing contemporary percutaneous coronary intervention. It is composed of a "Core" Model (anatomical SYNTAX score, age, creatinine clearance, and left ventricular ejection fraction), and "Extended" Model (composed of an additional 6 clinical variables), and has previously been cross validated in 7 contemporary stent trials (>6,000 patients). METHODS One-year all-cause death was analyzed in 2,627 patients undergoing percutaneous coronary intervention from the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) trial. Mortality predictions from the Core and Extended Models were studied with respect to discrimination, that is, separation of those with and without 1-year all-cause death (assessed by the concordance [C] statistic), and calibration, that is, agreement between observed and predicted outcomes (assessed with validation plots). Decision curve analyses, which weight the harms (false positives) against benefits (true positives) of using a risk score to make mortality predictions, were undertaken to assess clinical usefulness. RESULTS In the ACUITY trial, the median SYNTAX score was 9.0 (interquartile range 5.0 to 16.0); approximately 40% of patients had 3-vessel disease, 29% diabetes, and 85% underwent drug-eluting stent implantation. Validation plots confirmed agreement between observed and predicted mortality. The Core and Extended Models demonstrated substantial improvements in the discriminative ability for 1-year all-cause death compared with the anatomical SYNTAX score in isolation (C-statistics: SYNTAX score: 0.64, 95% confidence interval [CI]: 0.56 to 0.71; Core Model: 0.74, 95% CI: 0.66 to 0.79; Extended Model: 0.77, 95% CI: 0.70 to 0.83). Decision curve analyses confirmed the increasing ability to correctly identify patients who would die at 1 year with the Extended Model versus the Core Model versus the anatomical SYNTAX score, over a wide range of thresholds for mortality risk predictions. CONCLUSIONS Compared to the anatomical SYNTAX score alone, the Core and Extended Models of the Logistic Clinical SYNTAX score more accurately predicted individual 1-year mortality in patients presenting with non-ST-segment elevation acute coronary syndromes undergoing percutaneous coronary intervention. These findings support the clinical application of the Logistic Clinical SYNTAX score.
Resumo:
This is a case of atrial tachycardia 2 years after pulmonary transplantation. After excluding right atrial involvement, tachycardia origin was located in a scar region medial to the anastomosis of the left inferior pulmonary donor vein. Tachycardia mechanism was microreentry. Noninvasive electrocardiographic mapping performed before the ablation procedure matched with results of invasive Carto mapping and predicted both tachycardia mechanism and origin. We discuss arrhythmia mechanism found after pulmonary transplantation and benefit of noninvasive electrocardiographic mapping for procedure planning.
Resumo:
Article preview View full access options BoneKEy Reports | Review Print Email Share/bookmark Finite element analysis for prediction of bone strength Philippe K Zysset, Enrico Dall'Ara, Peter Varga & Dieter H Pahr Affiliations Corresponding author BoneKEy Reports (2013) 2, Article number: 386 (2013) doi:10.1038/bonekey.2013.120 Received 03 January 2013 Accepted 25 June 2013 Published online 07 August 2013 Article tools Citation Reprints Rights & permissions Abstract Abstract• References• Author information Finite element (FE) analysis has been applied for the past 40 years to simulate the mechanical behavior of bone. Although several validation studies have been performed on specific anatomical sites and load cases, this study aims to review the predictability of human bone strength at the three major osteoporotic fracture sites quantified in recently completed in vitro studies at our former institute. Specifically, the performance of FE analysis based on clinical computer tomography (QCT) is compared with the ones of the current densitometric standards, bone mineral content, bone mineral density (BMD) and areal BMD (aBMD). Clinical fractures were produced in monotonic axial compression of the distal radii, vertebral sections and in side loading of the proximal femora. QCT-based FE models of the three bones were developed to simulate as closely as possible the boundary conditions of each experiment. For all sites, the FE methodology exhibited the lowest errors and the highest correlations in predicting the experimental bone strength. Likely due to the improved CT image resolution, the quality of the FE prediction in the peripheral skeleton using high-resolution peripheral CT was superior to that in the axial skeleton with whole-body QCT. Because of its projective and scalar nature, the performance of aBMD in predicting bone strength depended on loading mode and was significantly inferior to FE in axial compression of radial or vertebral sections but not significantly inferior to FE in side loading of the femur. Considering the cumulated evidence from the published validation studies, it is concluded that FE models provide the most reliable surrogates of bone strength at any of the three fracture sites.
Resumo:
Soil spectroscopy was applied for predicting soil organic carbon (SOC) in the highlands of Ethiopia. Soil samples were acquired from Ethiopia’s National Soil Testing Centre and direct field sampling. The reflectance of samples was measured using a FieldSpec 3 diffuse reflectance spectrometer. Outliers and sample relation were evaluated using principal component analysis (PCA) and models were developed through partial least square regression (PLSR). For nine watersheds sampled, 20% of the samples were set aside to test prediction and 80% were used to develop calibration models. Depending on the number of samples per watershed, cross validation or independent validation were used.The stability of models was evaluated using coefficient of determination (R2), root mean square error (RMSE), and the ratio performance deviation (RPD). The R2 (%), RMSE (%), and RPD, respectively, for validation were Anjeni (88, 0.44, 3.05), Bale (86, 0.52, 2.7), Basketo (89, 0.57, 3.0), Benishangul (91, 0.30, 3.4), Kersa (82, 0.44, 2.4), Kola tembien (75, 0.44, 1.9),Maybar (84. 0.57, 2.5),Megech (85, 0.15, 2.6), andWondoGenet (86, 0.52, 2.7) indicating that themodels were stable. Models performed better for areas with high SOC values than areas with lower SOC values. Overall, soil spectroscopy performance ranged from very good to good.