878 resultados para Prediction by neural networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. In this paper, an adaptive neuro-fuzzy inference approach is proposed for short-term wind power forecasting. Results from a real-world case study are presented. A thorough comparison is carried out, taking into account the results obtained with other approaches. Numerical results are presented and conclusions are duly drawn. (C) 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a hybrid intelligent approach is proposed for short-term electricity prices forecasting in a competitive market. The proposed approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Conclusions are duly drawn. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a 3D-2D image registration method that relates image features of 2D projection images to the transformation parameters of the 3D image by nonlinear regression. The method is compared with a conventional registration method based on iterative optimization. For evaluation, simulated X-ray images (DRRs) were generated from coronary artery tree models derived from 3D CTA scans. Registration of nine vessel trees was performed, and the alignment quality was measured by the mean target registration error (mTRE). The regression approach was shown to be slightly less accurate, but much more robust than the method based on an iterative optimization approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Computação e Instrumentação Médica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologiea da Universidade Nova de Lisboa, para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A presente dissertação apresenta o estudo de previsão do diagrama de carga de subestações da Rede Elétrica Nacional (REN) utilizando redes neuronais, com o intuito de verificar a viabilidade do método utilizado, em estudos futuros. Atualmente, a energia elétrica é um bem essencial e desempenha um papel fundamental, tanto a nível económico do país, como a nível de conforto e satisfação individual. Com o desenvolvimento do setor elétrico e o aumento dos produtores torna-se importante a realização da previsão de diagramas de carga, contribuindo para a eficiência das empresas. Esta dissertação tem como objetivo a utilização do modelo das redes neuronais artificiais (RNA) para criar uma rede capaz de realizar a previsão de diagramas de carga, com a finalidade de oferecer a possibilidade de redução de custos e gastos, e a melhoria de qualidade e fiabilidade. Ao longo do trabalho são utilizados dados da carga (em MW), obtidos da REN, da subestação da Prelada e dados como a temperatura, humidade, vento e luminosidade, entre outros. Os dados foram devidamente tratados com a ajuda do software Excel. Com o software MATLAB são realizados treinos com redes neuronais, através da ferramenta Neural Network Fitting Tool, com o objetivo de obter uma rede que forneça os melhores resultados e posteriormente utiliza-la na previsão de novos dados. No processo de previsão, utilizando dados reais das subestações da Prelada e Ermesinde referentes a Março de 2015, comprova-se que com a utilização de RNA é possível obter dados de previsão credíveis, apesar de não ser uma previsão exata. Deste modo, no que diz respeito à previsão de diagramas de carga, as RNA são um bom método a utilizar, uma vez que fornecem, à parte interessada, uma boa previsão do consumo e comportamento das cargas elétricas. Com a finalização deste estudo os resultados obtidos são no mínimo satisfatórios. Consegue-se alcançar através das RNA resultados próximos aos valores que eram esperados, embora não exatamente iguais devido à existência de uma margem de erro na aprendizagem da rede neuronal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nos últimos anos o consumo de energia elétrica produzida a partir de fontes renováveis tem aumentado significativamente. Este aumento deve-se ao impacto ambiental que recursos como o petróleo, gás, urânio, carvão, entre outros, têm no meio ambiente e que são notáveis no diaa- dia com as alterações climáticas e o aquecimento global. Por sua vez, estes recursos têm um ciclo de vida limitado e a dada altura tornar-se-ão escassos. A preocupação de uma melhoria contínua na redução dos impactos ambientais levou à criação de Normas para uma gestão mais eficiente e sustentável do consumo de energia nos edifícios. Parte da eletricidade vendida pelas empresas de comercialização é produzida através de fontes renováveis, e com a recente publicação do Decreto de Lei nº 153/2014 de 20 outubro de 2014 que regulamenta o autoconsumo, permitindo que também os consumidores possam produzir a sua própria energia nas suas residências para reduzir os custos com a compra de eletricidade. Neste contexto surgiram os edifícios inteligentes. Por edifícios inteligentes entende-se que são edifícios construídos com materiais que os tornam mais eficientes, possuem iluminação e equipamentos elétricos mais eficientes, e têm sistemas de produção de energia que permitem alimentar o próprio edifício, para um consumo mais sustentado. Os sistemas implementados nos edifícios inteligentes visam a monitorização e gestão da energia consumida e produzida para evitar desperdícios de consumo. O trabalho desenvolvido visa o estudo e a implementação de Redes Neuronais Artificiais (RNA) para prever os consumos de energia elétrica dos edifícios N e I do ISEP/GECAD, bem como a previsão da produção dos seus painéis fotovoltáicos. O estudo feito aos dados de consumo permitiu identificar perfis típicos de consumo ao longo de uma semana e de que forma são influenciados pelo contexto, nomeadamente, com os dias da semana versus fim-de-semana, e com as estações do ano, sendo analisados perfis de consumo de inverno e verão. A produção de energia através de painéis fotovoltaicos foi também analisada para perceber se a produção atual é suficiente para satisfazer as necessidades de consumo dos edifícios. Também foi analisada a possibilidade da produção satisfazer parcialmente as necessidades de consumos específicos, por exemplo, da iluminação dos edifícios, dos seus sistemas de ar condicionado ou dos equipamentos usados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. METHOD: The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. RESULTS: The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last few years, we have observed an exponential increasing of the information systems, and parking information is one more example of them. The needs of obtaining reliable and updated information of parking slots availability are very important in the goal of traffic reduction. Also parking slot prediction is a new topic that has already started to be applied. San Francisco in America and Santander in Spain are examples of such projects carried out to obtain this kind of information. The aim of this thesis is the study and evaluation of methodologies for parking slot prediction and the integration in a web application, where all kind of users will be able to know the current parking status and also future status according to parking model predictions. The source of the data is ancillary in this work but it needs to be understood anyway to understand the parking behaviour. Actually, there are many modelling techniques used for this purpose such as time series analysis, decision trees, neural networks and clustering. In this work, the author explains the best techniques at this work, analyzes the result and points out the advantages and disadvantages of each one. The model will learn the periodic and seasonal patterns of the parking status behaviour, and with this knowledge it can predict future status values given a date. The data used comes from the Smart Park Ontinyent and it is about parking occupancy status together with timestamps and it is stored in a database. After data acquisition, data analysis and pre-processing was needed for model implementations. The first test done was with the boosting ensemble classifier, employed over a set of decision trees, created with C5.0 algorithm from a set of training samples, to assign a prediction value to each object. In addition to the predictions, this work has got measurements error that indicates the reliability of the outcome predictions being correct. The second test was done using the function fitting seasonal exponential smoothing tbats model. Finally as the last test, it has been tried a model that is actually a combination of the previous two models, just to see the result of this combination. The results were quite good for all of them, having error averages of 6.2, 6.6 and 5.4 in vacancies predictions for the three models respectively. This means from a parking of 47 places a 10% average error in parking slot predictions. This result could be even better with longer data available. In order to make this kind of information visible and reachable from everyone having a device with internet connection, a web application was made for this purpose. Beside the data displaying, this application also offers different functions to improve the task of searching for parking. The new functions, apart from parking prediction, were: - Park distances from user location. It provides all the distances to user current location to the different parks in the city. - Geocoding. The service for matching a literal description or an address to a concrete location. - Geolocation. The service for positioning the user. - Parking list panel. This is not a service neither a function, is just a better visualization and better handling of the information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fully comprehending brain function, as the scale of neural networks, will only be possi-ble with the development of tools by micro and nanofabrication. Regarding specifically silicon microelectrodes arrays, a significant improvement in long-term performance of these implants is essential. This project aims to create a silicon microelectrode coating that provides high-quality electrical recordings, while limiting the inflammatory response of chronic implants. To this purpose, a combined chitosan and gold nanoparticles coating was produced allied with electrodes modification by electrodeposition with PEDOT/PSS in order to reduce the im-pedance at 1kHz. Using a dip-coating mechanism, the silicon probe was coated and then charac-terized both morphologically and electrochemically, with focus on the stability of post-surgery performance in anesthetized rodents. Since not only the inflammatory response analysis is vital, the electrodes recording degradation over time was also studied. The produced film presented a thickness of approximately 50 μm that led to an increase of impedance of less than 20 kΩ in average. On a 3 week chronic implant, the impedance in-crease on the coated probe was of 641 kΩ, compared with 2.4 MΩ obtained for the uncoated probe. The inflammatory response was also significantly reduced due to the biocompatible film as proved by histological tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thrombotic disorders have severe consequences for the patients and for the society in general, being one of the main causes of death. These facts reveal that it is extremely important to be preventive; being aware of how probable is to have that kind of syndrome. Indeed, this work will focus on the development of a decision support system that will cater for an individual risk evaluation with respect to the surge of thrombotic complaints. The Knowledge Representation and Reasoning procedures used will be based on an extension to the Logic Programming language, allowing the handling of incomplete and/or default data. The computational framework in place will be centered on Artificial Neural Networks.