822 resultados para Power system simulator
Resumo:
The role of renewable energy in power systems is becoming more significant due to the increasing cost of fossil fuels and climate change concerns. However, the inclusion of Renewable Energy Generators (REG), such as wind power, has created additional problems for power system operators due to the variability and lower predictability of output of most REGs, with the Economic Dispatch (ED) problem being particularly difficult to resolve. In previous papers we had reported on the inclusion of wind power in the ED calculations. The simulation had been performed using a system model with wind power as an intermittent source, and the results of the simulation have been compared to that of the Direct Search Method (DSM) for similar cases. In this paper we report on our continuing investigations into using Genetic Algorithms (GA) for ED for an independent power system with a significant amount of wind energy in its generator portfolio. The results demonstrate, in line with previous reports in the literature, the effectiveness of GA when measured against a benchmark technique such as DSM.
Resumo:
The thesis is focused on the magnetic materials comparison and selection for high-power non-isolated dc-dc converters for industrial applications or electric, hybrid and fuel cell vehicles. The application of high-frequency bi-directional soft-switched dc-dc converters is also investigated. The thesis initially outlines the motivation for an energy-efficient transportation system with minimum environmental impact and reduced dependence on exhaustible resources. This is followed by a general overview of the power system architectures for electric, hybrid and fuel cell vehicles. The vehicle power sources and general dc-dc converter topologies are discussed. The dc-dc converter components are discussed with emphasis on recent semiconductor advances. A novel bi-directional soft-switched dc-dc converter with an auxiliary cell is introduced in this thesis. The soft-switching cell allows for the MOSFET's intrinsic body diode to operate in a half-bridge without reduced efficiency. The converter's mode-by-mode operation is analysed and closed-form expressions are presented for the average current gain of the converter. The design issues are presented and circuit limitations are discussed. Magnetic materials for the main dc-dc converter inductor are compared and contrasted. Novel magnetic material comparisons are introduced, which include the material dc bias capability and thermal conductivity. An inductor design algorithm is developed and used to compare the various magnetic materials for the application. The area-product analysis is presented for the minimum inductor size and highlights the optimum magnetic materials. Finally, the high-flux magnetic materials are experimentally compared. The practical effects of frequency, dc-bias, and converters duty-cycle effect for arbitrary shapes of flux density, air gap effects on core and winding, the winding shielding effect, and thermal configuration are investigated. The thesis results have been documented at IEEE EPE conference in 2007 and 2008, IEEE APEC in 2009 and 2010, and IEEE VPPC in 2010. A 2011 journal has been approved by IEEE Transactions on Power Electronics.
Resumo:
Due to growing concerns regarding the anthropogenic interference with the climate system, countries across the world are being challenged to develop effective strategies to mitigate climate change by reducing or preventing greenhouse gas (GHG) emissions. The European Union (EU) is committed to contribute to this challenge by setting a number of climate and energy targets for the years 2020, 2030 and 2050 and then agreeing effort sharing amongst Member States. This thesis focus on one Member State, Ireland, which faces specific challenges and is not on track to meet the targets agreed to date. Before this work commenced, there were no projections of energy demand or supply for Ireland beyond 2020. This thesis uses techno-economic energy modelling instruments to address this knowledge gap. It builds and compares robust, comprehensive policy scenarios, providing a means of assessing the implications of different future energy and emissions pathways for the Irish economy, Ireland’s energy mix and the environment. A central focus of this thesis is to explore the dynamics of the energy system moving towards a low carbon economy. This thesis develops an energy systems model (the Irish TIMES model) to assess the implications of a range of energy and climate policy targets and target years. The thesis also compares the results generated from the least cost scenarios with official projections and target pathways and provides useful metrics and indications to identify key drivers and to support both policy makers and stakeholder in identifying cost optimal strategies. The thesis also extends the functionality of energy system modelling by developing and applying new methodologies to provide additional insights with a focus on particular issues that emerge from the scenario analysis carried out. Firstly, the thesis develops a methodology for soft-linking an energy systems model (Irish TIMES) with a power systems model (PLEXOS) to improve the interpretation of the electricity sector results in the energy system model. The soft-linking enables higher temporal resolution and improved characterisation of power plants and power system operation Secondly, the thesis develops a methodology for the integration of agriculture and energy systems modelling to enable coherent economy wide climate mitigation scenario analysis. This provides a very useful starting point for considering the trade-offs between the energy system and agriculture in the context of a low carbon economy and for enabling analysis of land-use competition. Three specific time scale perspectives are examined in this thesis (2020, 2030, 2050), aligning with key policy target time horizons. The results indicate that Ireland’s short term mandatory emissions reduction target will not be achieved without a significant reassessment of renewable energy policy and that the current dominant policy focus on wind-generated electricity is misplaced. In the medium to long term, the results suggest that energy efficiency is the first cost effective measure to deliver emissions reduction; biomass and biofuels are likely to be the most significant fuel source for Ireland in the context of a low carbon future prompting the need for a detailed assessment of possible implications for sustainability and competition with the agri-food sectors; significant changes are required in infrastructure to deliver deep emissions reductions (to enable the electrification of heat and transport, to accommodate carbon capture and storage facilities (CCS) and for biofuels); competition between energy and agriculture for land-use will become a key issue. The purpose of this thesis is to increase the evidence-based underpinning energy and climate policy decisions in Ireland. The methodology is replicable in other Member States.
Resumo:
A digital differentiator simply involves the derivation of an input signal. This work includes the presentation of first-degree and second-degree differentiators, which are designed as both infinite-impulse-response (IIR) filters and finite-impulse-response (FIR) filters. The proposed differentiators have low-pass magnitude response characteristics, thereby rejecting noise frequencies higher than the cut-off frequency. Both steady-state frequency-domain characteristics and Time-domain analyses are given for the proposed differentiators. It is shown that the proposed differentiators perform well when compared to previously proposed filters. When considering the time-domain characteristics of the differentiators, the processing of quantized signals proved especially enlightening, in terms of the filtering effects of the proposed differentiators. The coefficients of the proposed differentiators are obtained using an optimization algorithm, while the optimization objectives include magnitude and phase response. The low-pass characteristic of the proposed differentiators is achieved by minimizing the filter variance. The low-pass differentiators designed show the steep roll-off, as well as having highly accurate magnitude response in the pass-band. While having a history of over three hundred years, the design of fractional differentiator has become a ‘hot topic’ in recent decades. One challenging problem in this area is that there are many different definitions to describe the fractional model, such as the Riemann-Liouville and Caputo definitions. Through use of a feedback structure, based on the Riemann-Liouville definition. It is shown that the performance of the fractional differentiator can be improved in both the frequency-domain and time-domain. Two applications based on the proposed differentiators are described in the thesis. Specifically, the first of these involves the application of second degree differentiators in the estimation of the frequency components of a power system. The second example concerns for an image processing, edge detection application.
Resumo:
Damping torque analysis is a well-developed technique for understanding and studying power system oscillations. This paper presents the applications of damping torque analysis for DC bus implemented damping control in power transmission networks in two examples. The first example is the investigation of damping effect of shunt VSC (Voltage Source Converter) based FACTS voltage control, i.e., STATCOM (Static Synchronous Compensator) voltage control. It is shown in the paper that STATCOM voltage control mainly contributes synchronous torque and hence has little effect on the damping of power system oscillations. The second example is the damping control implemented by a Battery Energy Storage System (BESS) installed in a power system. Damping torque analysis reveals that when BESS damping control is realized by regulating exchange of active and reactive power between the BESS and power system respectively, BESS damping control exhibits different properties. It is concluded by damping torque analysis that BESS damping control implemented by regulating active power is better with less interaction with BESS voltage control and more robust to variations of power system operating conditions. In the paper, all analytical conclusions obtained are demonstrated by simulation results of example power systems.
Resumo:
In a deregulated power system, it is usually required to determine the shares of each load and generation in line flows, to permit fair allocation of transmission costs between the interested parties. The paper presents a new method of determining the contributions of each load to line flows and losses. The method is based on power-flow topology and has the advantage of being the least computationally demanding of similar methods.
Resumo:
Synchronisation of small distributed generation, 30 kVA–2 MVA, employing salient-pole synchronous machines is normally performed within a narrow range of tolerances for voltage, frequency and phase angle. However, there are situations when the ability to synchronise with non-ideal conditions would be beneficial. Such applications include power system islanding and rapid generator start-up. The physical process and effect of out-of-phase synchronisation is investigated both through simulation and experimental tests on a salient-pole alternator. There are many factors that affect synchronisation, but particular attention is given to synchronisation angle, voltage difference and, as generators will be loaded during islanding, the load angle. The results suggest that it would be acceptable for the maximum synchronisation angle of distributed generation to exceed that of current practice. Interesting observations on the nature of out-of-phase synchronisation are made, including some specific to small salient-pole synchronous machines. Furthermore, recommendations are made for synchronisation under different system conditions.
Resumo:
Small salient-pole machines, in the range 30 kVA to 2 MVA, are often used in distributed generators, which in turn are likely to form the major constituent of power generation in power system islanding schemes or microgrids. In addition to power system faults, such as short-circuits, islanding contains an inherent risk of out-of-synchronism re-closure onto the main power system. To understand more fully the effect of these phenomena on a small salient-pole alternator, the armature and field currents from tests conducted on a 31.5 kVA machine are analysed. This study demonstrates that by resolving the voltage difference between the machine terminals and bus into direct and quadrature axis components, interesting properties of the transient currents are revealed. The presence of saliency and short time-constants cause intriguing differences between machine events such as out-of-phase synchronisations and sudden three-phase short-circuits.
Resumo:
Synchronous islanded operation involves continuously holding an islanded power network in virtual synchronism with the main power system to aid paralleling and avoid potentially damaging out-of-synchronism reclosure. This requires phase control of the generators in the island and the transmission of a reference signal from a secure location on the main power system. Global positioning system (GPS) time-synchronized phasor measurements transmitted via an Internet protocol (IP) are used for the reference signal. However, while offering low cost and a readily available solution for distribution networks, IP communications have variable latency and are susceptible to packet loss, which can make time-critical control applications difficult. This paper investigates the ability of the phase-control system to tolerate communications latency. Phasor measurement conditioning algorithms that can tolerate latency are used in the phase-control loop of a 50-kVA diesel generator. © 2010 IEEE.
Resumo:
The increasing penetration of wind generation on the Island of Ireland has been accompanied by close investigation of low-frequency pulsations contained within active power flow. A primary concern is excitation of low-frequency oscillation modes already present on the system, particularly the 0.75 Hz mode as a consequence of interconnection between the Northern and Southern power system networks. In order to determine whether the prevalence of wind generation has a negative effect (excites modes) or positive impact (damping of modes) on the power system, oscillations must be measured and characterised. Using time – frequency methods, this paper presents work that has been conducted to extract features from low-frequency active power pulsations to determine the composition of oscillatory modes which may impact on dynamic stability. The paper proposes a combined wavelet-Prony method to extract modal components and determine damping factors. The method is exemplified using real data obtained from wind farm measurements.