993 resultados para Power Doppler ultrasound


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a world increasingly conscientious about environmental effects, power and energy systems are undergoing huge transformations. Electric energy produced from power plants is transmitted and distributed to end users through a power grid. The power industry performs the engineering design, installation, operation, and maintenance tasks to provide a high-quality, secure energy supply while accounting for its systems’ abilities to withstand uncertain events, such as weather-related outages. Competitive, deregulated electricity markets and new renewable energy sources, however, have further complicated this already complex infrastructure.Sustainable development has also been a challenge for power systems. Recently, there has been a signifi cant increase in the installation of distributed generations, mainly based on renewable resources such as wind and solar. Integrating these new generation systems leads to more complexity. Indeed, the number of generation sources greatly increases as the grid embraces numerous smaller and distributed resources. In addition, the inherent uncertainties of wind and solar energy lead to technical challenges such as forecasting, scheduling, operation, control, and risk management. In this special issue introductory article, we analyze the key areas in this field that can benefi t most from AI and intelligent systems now and in the future.We also identify new opportunities for cross-fertilization between power systems and energy markets and intelligent systems researchers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric vehicles (EV) offer a great potential to address the integration of renewable energy sources (RES) in the power grid, and thus reduce the dependence on oil as well as the greenhouse gases (GHG) emissions. The high share of wind energy in the Portuguese energy mix expected for 2020 can led to eventual curtailment, especially during the winter when high levels of hydro generation occur. In this paper a methodology based on a unit commitment and economic dispatch is implemented, and a hydro-thermal dispatch is performed in order to evaluate the impact of the EVs integration into the grid. Results show that the considered 10 % penetration of EVs in the Portuguese fleet would increase load in 3 % and would not integrate a significant amount of wind energy because curtailment is already reduced in the absence of EVs. According to the results, the EV is charged mostly with thermal generation and the associated emissions are much higher than if they were calculated based on the generation mix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A start-up circuit, used in a micro-power indoor light energy harvesting system, is described. This start-up circuit achieves two goals: first, to produce a reset signal, power-on-reset (POR), for the energy harvesting system, and secondly, to temporarily shunt the output of the photovoltaic (PV) cells, to the output node of the system, which is connected to a capacitor. This capacitor is charged to a suitable value, so that a voltage step-up converter starts operating, thus increasing the output voltage to a larger value than the one provided by the PV cells. A prototype of the circuit was manufactured in a 130 nm CMOS technology, occupying an area of only 0.019 mm(2). Experimental results demonstrate the correct operation of the circuit, being able to correctly start-up the system, even when having an input as low as 390 mV using, in this case, an estimated energy of only 5.3 pJ to produce the start-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com o crescimento previsível e exponencial das redes de comunicações móveis motivado pela mobilidade, flexibilidade e também comodidade do utilizador levam a que este se torne na fatia mais importante do mundo das telecomunicações dos dias que correm. Assim é importante estudar e caracterizar canais rádio para as mais diversas gamas de frequências utilizadas nas mais variadas tecnologias. O objectivo principal desta dissertação de Mestrado é caracterizar um canal rádio para a tecnologia sem fios Worldwide Inter-operability for Microwave Access (Wimax para as frequências de 3,5 GHz e 5 GHz) actualmente vista pela comunidade científica como a tecnologia sem fios com maiores perspectivas de sucesso. Para tal, determinaram-se o Perfil de Atraso de Potência (PAP) e também a Potência em Função da Distância (PFD) recorrendo ao método computacional de simulação Finite-Difference Time-Domain (FDTD). De forma a estudar e caracterizar o canal rádio, em termos de desvanecimento relativo ao espalhamento de atraso, usaram-se dois métodos alternativos que têm como entrada o PAP. Para caracterizar o canal quanto ao desvanecimento baseado em espalhamento de Doppler, recorreu-se também a duas técnicas alternativas tendo como entrada o PFD. Em ambas as situações os dois métodos alternativos convergiram para os mesmos resultados. A caracterização é feita em dois cenários diferentes: um em que consideramos que a maioria dos obstáculos são condutores eléctricos perfeitos (CEP) e que passaremos a designar Cenário PEC, e um segundo cenário em que os obstáculos têm propriedades electromagnéticas diferentes, e que passará a ser designado por Cenário MIX. Em ambos os cenários de análise concluiu-se que o canal é plano, lento e sem ISI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless local-area networks (WLANs) have been deployed as office and home communications infrastructures worldwide. The diversification of the standards, such as IEEE 802.11 series demands the design of RF front-ends. Low power consumption is one of the most important design concerns in the application of those technologies. To maintain competitive hardware costs, CMOS has been used since it is the best solution for low cost and high integration processing, allowing analog circuits to be mixed with digital ones. In the receiver chain, the low noise amplifier (LNA) is one of the most critical blocks in a transceiver design. The sensitivity is mainly determined by the LNA noise figure and gain. It interfaces with the pre-select filter and the mixer. Furthermore, since it is the first gain stage, care must be taken to provide accurate input match, low-noise figure, good linearity and a sufficient gain over a wide band of operation. Several CMOS LNAs have been reported during the last decade, showing that the most research has been done at 802.11/b and GSM standards (900-2400MHz spectrum) and more recently at 802.11/a (5GHz band). One of the more significant disadvantages of 802.11/b is that the frequency band is crowded and subject to interference from other technologies, as is 2.4GHz cordless phones and Bluetooth. As the demand for radio-frequency integrated circuits, operating at higher frequency bands, increases, the IEEE 802.11/a standard becomes a very attractive option to wireless communication system developers. This paper presents the design and implementation of a low power, low noise amplifier aimed at IEEE 802.11a for WLAN applications. It was designed to be integrated with an active balun and mixer, representing the first step toward a fully integrated monolithic WLAN receiver. All the required circuits are integrated at the same die and are powered by 1.8V supply source. Preliminary experimental results (S-parameters) are shown and promise excellent results. The LNA circuit design details are illustrated in Section 2. Spectre simulation results focused at gain, noise figure (NF) and input/output matching are presented in Section 3. Finally, conclusions and comparison with other recently reported LNAs are made in Section 4, followed by future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copyright © 2014 The Pennsylvania State University, University Park, PA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liver steatosis is a common disease usually associated with social and genetic factors. Early detection and quantification is important since it can evolve to cirrhosis. In this paper, a new computer-aided diagnosis (CAD) system for steatosis classification, in a local and global basis, is presented. Bayes factor is computed from objective ultrasound textural features extracted from the liver parenchyma. The goal is to develop a CAD screening tool, to help in the steatosis detection. Results showed an accuracy of 93.33%, with a sensitivity of 94.59% and specificity of 92.11%, using the Bayes classifier. The proposed CAD system is a suitable graphical display for steatosis classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liver steatosis is a common disease usually associated with social and genetic factors. Early detection and quantification is important since it can evolve to cirrhosis. Steatosis is usually a diffuse liver disease, since it is globally affected. However, steatosis can also be focal affecting only some foci difficult to discriminate. In both cases, steatosis is detected by laboratorial analysis and visual inspection of ultrasound images of the hepatic parenchyma. Liver biopsy is the most accurate diagnostic method but its invasive nature suggest the use of other non-invasive methods, while visual inspection of the ultrasound images is subjective and prone to error. In this paper a new Computer Aided Diagnosis (CAD) system for steatosis classification and analysis is presented, where the Bayes Factor, obatined from objective intensity and textural features extracted from US images of the liver, is computed in a local or global basis. The main goal is to provide the physician with an application to make it faster and accurate the diagnosis and quantification of steatosis, namely in a screening approach. The results showed an overall accuracy of 93.54% with a sensibility of 95.83% and 85.71% for normal and steatosis class, respectively. The proposed CAD system seemed suitable as a graphical display for steatosis classification and comparison with some of the most recent works in the literature is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic Liver Disease is a progressive, most of the time asymptomatic, and potentially fatal disease. In this paper, a semi-automatic procedure to stage this disease is proposed based on ultrasound liver images, clinical and laboratorial data. In the core of the algorithm two classifiers are used: a k nearest neighbor and a Support Vector Machine, with different kernels. The classifiers were trained with the proposed multi-modal feature set and the results obtained were compared with the laboratorial and clinical feature set. The results showed that using ultrasound based features, in association with laboratorial and clinical features, improve the classification accuracy. The support vector machine, polynomial kernel, outperformed the others classifiers in every class studied. For the Normal class we achieved 100% accuracy, for the chronic hepatitis with cirrhosis 73.08%, for compensated cirrhosis 59.26% and for decompensated cirrhosis 91.67%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steatosis, also known as fatty liver, corresponds to an abnormal retention of lipids within the hepatic cells and reflects an impairment of the normal processes of synthesis and elimination of fat. Several causes may lead to this condition, namely obesity, diabetes, or alcoholism. In this paper an automatic classification algorithm is proposed for the diagnosis of the liver steatosis from ultrasound images. The features are selected in order to catch the same characteristics used by the physicians in the diagnosis of the disease based on visual inspection of the ultrasound images. The algorithm, designed in a Bayesian framework, computes two images: i) a despeckled one, containing the anatomic and echogenic information of the liver, and ii) an image containing only the speckle used to compute the textural features. These images are computed from the estimated RF signal generated by the ultrasound probe where the dynamic range compression performed by the equipment is taken into account. A Bayes classifier, trained with data manually classified by expert clinicians and used as ground truth, reaches an overall accuracy of 95% and a 100% of sensitivity. The main novelties of the method are the estimations of the RF and speckle images which make it possible to accurately compute textural features of the liver parenchyma relevant for the diagnosis.