957 resultados para Potassium fertilizers.
Resumo:
K+ channels, which have been linked to regulation of electrogenic solute transport as well as Ca2+ influx, represent a locus in hepatocytes for the concerted actions of hormones that employ Ca2+ and cAMP as intracellular messengers. Despite considerable study, the single-channel basis for synergistic effects of Ca2+ and cAMP on hepatocellular K+ conductance is not well understood. To address this question, patch-clamp recording techniques were applied to a model liver cell line, HTC hepatoma cells. Increasing the cytosolic Ca2+ concentration ([Ca2+]i) in HTC cells, either by activation of purinergic receptors with ATP or by inhibition of intracellular Ca2+ sequestration with thapsigargin, activated low-conductance (9-pS) K+ channels. Studies with excised membrane patches suggested that these channels were directly activated by Ca2+. Exposure of HTC cells to a permeant cAMP analog, 8-(4-chlorophenylthio)-cAMP, also activated 9-pS K+ channels but did not change [Ca2+]i. In excised membrane patches, cAMP-dependent protein kinase (the downstream effector of cAMP) activated K+ channels with conductance and selectivity identical to those of channels activated by Ca2+. In addition, cAMP-dependent protein kinase activated a distinct K+ channel type (5 pS). These data represent the differential regulation of low-conductance K+ channels by signaling pathways mediated by Ca2+ and cAMP. Moreover, since low-conductance Ca(2+)-activated K+ channels have been identified in a variety of cell types, these findings suggest that differential regulation of K+ channels by hormones with distinct signaling pathways may provide a mechanism for hormonal control of solute transport and Ca(2+)-dependent cellular functions in the liver as well as other nonexcitable tissues.
Resumo:
The clonal rat pituitary cell line GH4C1 expresses the genes for several voltage-dependent potassium channels including Kv1.5 and Kv1.4. Dexamethasone, a glucocorticoid agonist, induces a slowly inactivating potassium current in these cells but does not alter the amplitude of a rapidly inactivating component of potassium current. We have found that the induction of the slowly inactivating current can be blocked by an antisense phosphorothioate deoxyoligonucleotide to the Kv1.5 mRNA sequence. In contrast, antisense deoxyoligonucleotides against Kv1.4 mRNA specifically decrease the expression of the dexamethasone-insensitive rapidly inactivating current. These results demonstrate the usefulness of antisense oligonucleotides in correlating potassium currents with specific potassium channel proteins in the cell types in which they are naturally expressed.
Resumo:
Effects of increasing extracellular K+ or intracellular Na+ concentrations on glucose metabolism in cultures of rat astroglia and neurons were examined. Cells were incubated in bicarbonate buffer, pH 7.2, containing 2 mM glucose, tracer amounts of [14C]deoxyglucose ([14C]dGlc), and 5.4, 28, or 56 mM KCl for 10, 15, or 30 min, and then for 5 min in [14C]dGlc-free buffer to allow efflux of unmetabolized [14C]dGlc. Cells were then digested and assayed for labeled products, which were shown to consist of 96-98% [14C]deoxyglucose 6-phosphate. Increased K+ concentrations significantly raised [14C]deoxyglucose 6-phosphate accumulation in both neuronal and mixed neuronal-astroglial cultures at 15 and 30 min but did not raise it in astroglial cultures. Veratridine (75 microM), which opens voltage-dependent Na+ channels, significantly raised rates of [14C]dGlc phosphorylation in astroglial cultures (+20%), and these elevations were blocked by either 1 mM ouabain, a specific inhibitor of Na+,K(+)-ATPase (EC 3.6.1.37), or 10 microM tetrodotoxin, which blocks Na+ channels. The carboxylic sodium ionophore, monensin (10 microM), more than doubled [14C]dGlc phosphorylation; this effect was only partially blocked by ouabain and unaffected by tetrodotoxin. L-Glutamate (500 microM) also stimulated [14C]dGlc phosphorylation in astroglia--not through N-methyl-D-aspartate or non-N-methyl-D-aspartate receptor mechanisms but via a Na(+)-dependent glutamate-uptake system. These results indicate that increased uptake of Na+ can stimulate energy metabolism in astroglial cells.
Resumo:
O uso da irrigação em cafeeiro é uma tecnologia que vem se consolidando e mostrando-se economicamente viável ao longo dos tempos, trazendo junto com ela a técnica da fertirrigação. Desta forma, o presente estudo teve como objetivo avaliar a influência de formas de aplicação e fontes de fertilizantes sobre a condutividade elétrica e pH da solução do solo, bem como no desenvolvimento e produção do café conilon irrigado por gotejamento. O trabalho foi desenvolvido em São Gabriel da Palha, Espírito Santo, utilizando o clone 12V da variedade INCAPER 8142. O experimento foi delineado em blocos ao acaso (DBC) com seis tratamentos e quatro blocos. Os tratamentos adotados foram: T1 - Controle - adubação nitrogenada e potássica aplicada via solo nas fontes ureia e cloreto de potássio; T2 - Adubação nitrogenada e potássica aplicada via solo nas fontes ureia e cloreto de potássio de liberação controlada; T3 - Adubação nitrogenada e potássica aplicada via fertirrigação nas fontes ureia e cloreto de potássio; T4 - Adubação nitrogenada e potássica aplicada via fertirrigação nas fontes nitrato de amônio e sulfato de potássio; T5 - Adubação nitrogenada e potássica aplicada via fertirrigação nas fontes nitrato de amônio e nitrato de potássio; T6 - Adubação nitrogenada e potássica aplicada via solo nas fontes ureia e cloreto de potássio de liberação controlada no período de outubro a março (período chuvoso) e adubação nitrogenada e potássica aplicada via fertirrigação, nas fontes nitrato de amônio e sulfato de potássio no período de abril a setembro (período seco). Foi monitorado o pH e condutividade elétrica da solução do solo, avaliações biométricas das plantas tais como altura, comprimento do primeiro ramo plagiotrópico e número de nós no primeiro ramo plagiotrópico, além da produção por planta e estimativa de produtividade. Os tratamentos T1 e T3 que utilizaram ureia e cloreto de potássio e o T4 - nitrato de amônio e sulfato de potássio disponibilizaram maiores quantidade de nitrogênio na forma amoniacal, causando maior acidificação do bulbo. Em contrapartida os tratamentos T2, T5 e T6 apresentaram menor acidificação, com diferença estatística significativa na variação do pH nas duas profundidades analisadas a partir de 18 meses da aplicação dos tratamentos. Nos tratamentos T2 e T6 observou-se menor salinidade inicial na avaliação aos 90 dias após o plantio através da leitura da condutividade elétrica da solução do solo. Para as avaliações biométricas, os tratamentos T2, T4, T5 e T6 diferiram estatisticamente dos tratamentos T1 e T3, influenciando positivamente à altura de plantas, comprimento e número de nós no primeiro ramo plagiotrópico.
Resumo:
Aryl imidazole-1-sulfonates are efficiently cross-coupled with arylboronic acids and potassium aryltrifluoroborates using only 0.5 mol % of oxime palladacycles 1 under aqueous conditions at 110 °C. Under these simple phosphane-free reaction conditions a wide array of biaryl derivatives has been prepared in high yields. This methodology allows in situ phenol sulfonation and one-pot Suzuki arylation as well as the employment of microwave irradiation conditions.
Resumo:
Detailed electronic structure calculations of picene clusters doped by potassium modeling the crystalline K3picene structure show that while two electrons are completely transferred from potassium atoms to the lowest-energy unoccupied molecular orbital of pristine picene, the third one remains closely attached to both material components. Multiconfigurational analysis is necessary to show that many structures of almost degenerate total energies compete to define the cluster ground state. Our results prove that the 4s orbital of potassium should be included in any interaction model describing the material. We propose a quarter-filled two-orbital model as the most simple model capable of describing the electronic structure of K-intercalated picene. Precise solutions obtained by a development of the Lanczos method show low-energy electronic excitations involving orbitals located at different positions. Consequently, metallic transport is possible in spite of the clear dominance of interaction over hopping.
Resumo:
Palladium nanoparticles supported on graphene platelets have been efficiently used as catalyst in the Suzuki–Miyaura coupling between aryl bromides and potassium aryltrifluoroborates using 0.1 mol% of Pd and potassium carbonate as base in MeOH/H2O as solvent at 80 °C. The reaction can be performed using conventional and microwave heating showing the catalyst high reusability, particularly with microwaves, where lower aggregation of Pd nanoparticles has been observed. A dissolution/re-deposition catalytic mechanism is proposed, based on the fact that palladium leaching to the solution is detected under microwave irradiation.
Resumo:
There is increasing evidence to support the notion that membrane proteins, instead of being isolated components floating in a fluid lipid environment, can be assembled into supramolecular complexes that take part in a variety of cooperative cellular functions. The interplay between lipid-protein and protein-protein interactions is expected to be a determinant factor in the assembly and dynamics of such membrane complexes. Here we report on a role of anionic phospholipids in determining the extent of clustering of KcsA, a model potassium channel. Assembly/disassembly of channel clusters occurs, at least partly, as a consequence of competing lipid-protein and protein-protein interactions at nonannular lipid binding sites on the channel surface and brings about profound changes in the gating properties of the channel. Our results suggest that these latter effects of anionic lipids are mediated via the Trp67–Glu71–Asp80 inactivation triad within the channel structure and its bearing on the selectivity filter.