886 resultados para Post-translational Processing
Resumo:
The amygdala has been studied extensively for its critical role in associative fear conditioning in animals and humans. Noxious stimuli, such as those used for fear conditioning, are most effective in eliciting behavioral responses and amygdala activation when experienced in an unpredictable manner. Here, we show, using a translational approach in mice and humans, that unpredictability per se without interaction with motivational information is sufficient to induce sustained neural activity in the amygdala and to elicit anxiety-like behavior. Exposing mice to mere temporal unpredictability within a time series of neutral sound pulses in an otherwise neutral sensory environment increased expression of the immediate-early gene c-fos and prevented rapid habituation of single neuron activity in the basolateral amygdala. At the behavioral level, unpredictable, but not predictable, auditory stimulation induced avoidance and anxiety-like behavior. In humans, functional magnetic resonance imaging revealed that temporal unpredictably causes sustained neural activity in amygdala and anxiety-like behavior as quantified by enhanced attention toward emotional faces. Our findings show that unpredictability per se is an important feature of the sensory environment influencing habituation of neuronal activity in amygdala and emotional behavior and indicate that regulation of amygdala habituation represents an evolutionary-conserved mechanism for adapting behavior in anticipation of temporally unpredictable events.
Resumo:
We present an algorithm for estimating dense image correspondences. Our versatile approach lends itself to various tasks typical for video post-processing, including image morphing, optical flow estimation, stereo rectification, disparity/depth reconstruction, and baseline adjustment. We incorporate recent advances in feature matching, energy minimization, stereo vision, and data clustering into our approach. At the core of our correspondence estimation we use Efficient Belief Propagation for energy minimization. While state-of-the-art algorithms only work on thumbnail-sized images, our novel feature downsampling scheme in combination with a simple, yet efficient data term compression, can cope with high-resolution data. The incorporation of SIFT (Scale-Invariant Feature Transform) features into data term computation further resolves matching ambiguities, making long-range correspondence estimation possible. We detect occluded areas by evaluating the correspondence symmetry, we further apply Geodesic matting to automatically determine plausible values in these regions.
Resumo:
Recognizing the increasing amount of information shared on Social Networking Sites (SNS), in this study we aim to explore the information processing strategies of users on Facebook. Specifically, we aim to investigate the impact of various factors on user attitudes towards the posts on their Newsfeed. To collect the data, we program a Facebook application that allows users to evaluate posts in real time. Applying Structural Equation Modeling to a sample of 857 observations we find that it is mostly the affective attitude that shapes user behavior on the network. This attitude, in turn, is mainly determined by the communication intensity between users, overriding comprehensibility of the post and almost neglecting post length and user posting frequency.
Resumo:
MicroRNAs (miRNAs) inhibit mRNA expression in general by base pairing to the 3'UTR of target mRNAs and consequently inhibiting translation and/or initiating poly(A) tail deadenylation and mRNA destabilization. Here we examine the mechanism and kinetics of miRNA-mediated deadenylation in mouse Krebs-2 ascites extract. We demonstrate that miRNA-mediated mRNA deadenylation occurs subsequent to initial translational inhibition, indicating a two-step mechanism of miRNA action, which serves to consolidate repression. We show that a let-7 miRNA-loaded RNA-induced silencing complex (miRISC) interacts with the poly(A)-binding protein (PABP) and the CAF1 and CCR4 deadenylases. In addition, we demonstrate that miRNA-mediated deadenylation is dependent upon CAF1 activity and PABP, which serves as a bona fide miRNA coactivator. Importantly, we present evidence that GW182, a core component of the miRISC, directly interacts with PABP via its C-terminal region and that this interaction is required for miRNA-mediated deadenylation.
Resumo:
Bronchial epithelial cells play a pivotal role in airway inflammation, but little is known about posttranscriptional regulation of mediator gene expression during the inflammatory response in these cells. Here, we show that activation of human bronchial epithelial BEAS-2B cells by proinflammatory cytokines interleukin-4 (IL-4) and tumor necrosis factor alpha (TNF-alpha) leads to an increase in the mRNA stability of the key chemokines monocyte chemotactic protein 1 and IL-8, an elevation of the global translation rate, an increase in the levels of several proteins critical for translation, and a reduction of microRNA-mediated translational repression. Moreover, using the BEAS-2B cell system and a mouse model, we found that RNA processing bodies (P bodies), cytoplasmic domains linked to storage and/or degradation of translationally silenced mRNAs, are significantly reduced in activated bronchial epithelial cells, suggesting a physiological role for P bodies in airway inflammation. Our study reveals an orchestrated change among posttranscriptional mechanisms, which help sustain high levels of inflammatory mediator production in bronchial epithelium during the pathogenesis of inflammatory airway diseases.
Resumo:
Translational research has not yet elucidated whether alterations in central pain processes are related to peripheral inflammatory processes in chronic pain patients. We tested the hypothesis that the concentration of cytokines in the peritoneal fluid of endometriosis patients with chronic pain correlate with parameters of hyperexcitability of the nociceptive system. The concentrations of 15 peritoneal fluid cytokines were measured in 11 patients with chronic pelvic pain and a diagnosis of endometriosis. Six parameters assessing central pain processes were recorded. Positive correlations between concentration of some cytokines in the peritoneal fluid and amplification of central pain processing were found. The results suggest that inflammatory mechanisms may be important in the pathophysiology of altered central pain processes and that cytokines produced in the environment of endometriosis could act as mediators between the peripheral lesion and changes in central nociceptive processes.
Resumo:
To test whether humans can encode words during sleep we played everyday words to men while they were napping and assessed priming from sleep played words following waking. Words were presented during non rapid eye movement (NREM) sleep. Priming was assessed using a semantic and a perceptual priming test. These tests measured differences in the proces sing of words that had been or had not been played during sleep. Synonyms to sleep played words were the targets in the semantic priming test that tapped the meaning of sleep played words. All men responded to sleep played words by producing up states in their electroencephalogram. Up states are NREM sleep specific phases of briefly increased neuronal excitability. The word evoked up states might have promoted word processing during sleep. Yet, the mean performance in the priming tests administered following sleep was at chance level, which suggests that participants as a group failed to show priming following sleep. However, performance in the two priming tests was positively correlated to each other and to the magnitude of the word evoked up states. Hence, the larger a participant’s word evoked up states, the larger his perceptual and semantic priming. Those participants who scored high on all variables must have encoded words during sleep. We conclude that some humans are able to encode words during sleep, but more research is needed to pin down the factors that modulate this ability.
Resumo:
The paper showcases the field- and lab-documentation system developed for Kinneret Regional Project, an international archaeological expedition to the Northwestern shore of the Sea of Galilee (Israel) under the auspices of the University of Bern, the University of Helsinki, Leiden University and Wofford College. The core of the data management system is a fully relational, server-based database framework, which also includes time-based and static GIS services, stratigraphic analysis tools and fully indexed document/digital image archives. Data collection in the field is based on mobile, hand-held devices equipped with a custom-tailored stand-alone application. Comprehensive three-dimensional documentation of all finds and findings is achieved by means of total stations and/or high-precision GPS devices. All archaeological information retrieved in the field – including tachymetric data – is synched with the core system on the fly and thus immediately available for further processing in the field lab (within the local network) or for post-excavation analysis at remote institutions (via the WWW). Besides a short demonstration of the main functionalities, the paper also presents some of the key technologies used and illustrates usability aspects of the system’s individual components.
Resumo:
Trypanosomes mostly regulate gene expression through post-transcriptional mechanisms, particularly mRNA stability. However, much mRNA degradation is cytoplasmic such that mRNA nuclear export must represent an important level of regulation. Ribosomal RNAs must also be exported from the nucleus and the trypanosome orthologue of NMD3 has been confirmed to be involved in rRNA processing and export, matching its function in other organisms. Surprisingly, we found that TbNMD3 depletion also generates mRNA accumulation of procyclin-associated genes (PAGs), these being co-transcribed by RNA polymerase I with the procyclin surface antigen genes expressed on trypanosome insect forms. By whole transcriptome RNA-seq analysis of TbNMD3-depleted cells we confirm the regulation of the PAG transcripts by TbNMD3 and using reporter constructs reveal that PAG1 regulation is mediated by its 5'UTR. Dissection of the mechanism of regulation demonstrates that it is not dependent upon translational inhibition mediated by TbNMD3 depletion nor enhanced transcription. However, depletion of the nuclear export factors XPO1 or MEX67 recapitulates the effects of TbNMD3 depletion on PAG mRNAs and mRNAs accumulated in the nucleus of TbNMD3-depleted cells. These results invoke a novel RNA regulatory mechanism involving the NMD3-dependent nuclear export of mRNA cargos, suggesting a shared platform for mRNA and rRNA export.
Resumo:
XMapTools is a MATLAB©-based graphical user interface program for electron microprobe X-ray image processing, which can be used to estimate the pressure–temperature conditions of crystallization of minerals in metamorphic rocks. This program (available online at http://www.xmaptools.com) provides a method to standardize raw electron microprobe data and includes functions to calculate the oxide weight percent compositions for various minerals. A set of external functions is provided to calculate structural formulae from the standardized analyses as well as to estimate pressure–temperature conditions of crystallization, using empirical and semi-empirical thermobarometers from the literature. Two graphical user interface modules, Chem2D and Triplot3D, are used to plot mineral compositions into binary and ternary diagrams. As an example, the software is used to study a high-pressure Himalayan eclogite sample from the Stak massif in Pakistan. The high-pressure paragenesis consisting of omphacite and garnet has been retrogressed to a symplectitic assemblage of amphibole, plagioclase and clinopyroxene. Mineral compositions corresponding to ~165,000 analyses yield estimates for the eclogitic pressure–temperature retrograde path from 25 kbar to 9 kbar. Corresponding pressure–temperature maps were plotted and used to interpret the link between the equilibrium conditions of crystallization and the symplectitic microstructures. This example illustrates the usefulness of XMapTools for studying variations of the chemical composition of minerals and for retrieving information on metamorphic conditions on a microscale, towards computation of continuous pressure–temperature-and relative time path in zoned metamorphic minerals not affected by post-crystallization diffusion.
Resumo:
Small non-protein-coding RNA (ncRNA) molecules represent major contributors to regulatory networks in controlling gene expression in a highly efficient manner. Most of the recently discovered regulatory ncRNAs acting on translation target the mRNA rather than the ribosome (e.g.: miRNAs, siRNAs, antisense RNAs). To address the question, whether ncRNA regulators exist that are capable of modulating the rate of protein production by directly interacting with the ribosome, we have analyzed the small ncRNA interactomes of ribosomes. Deep-sequencing analyses revealed thousands of putative rancRNAs in various model organisms (1,2). For a subset of these ncRNA candidates we have gathered experimental evidence that they associate with ribosomes in a stress-dependent manner and fine-tune the rate of protein biosynthesis (3,4). Many of the investigated rancRNAs appear to be processing products of larger functional RNAs, such as tRNAs (2,3), mRNAs (3), or snoRNAs (2). Post-transcriptional cleavage of RNA to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. Our data disclose the ribosome as target for small regulatory RNAs. rancRNAs are found in all domains of life and represent a prevalent but so far largely unexplored class of regulatory molecules (5). Ongoing work in our lab revealed first insight into rancRNA processing and mechanism of this emerging class of translation regulators.
Resumo:
Referred to as orthographic depth, the degree of consistency of grapheme/phoneme correspondences varies across languages from high in shallow orthographies to low in deep orthographies. The present study investigates the impact of orthographic depth on reading route by analyzing evoked potentials to words in a deep (French) and shallow (German) language presented to highly proficient bilinguals. ERP analyses to German and French words revealed significant topographic modulations 240-280ms post-stimulus onset, indicative of distinct brain networks engaged in reading over this time window. Source estimations revealed that these effects stemmed from modulations of left insular, inferior frontal and dorsolateral regions (German>French) previously associated to phonological processing. Our results show that reading in a shallow language was associated to a stronger engagement of phonological pathways than reading in a deep language. Thus, the lexical pathways favored in word reading are reinforced by phonological networks more strongly in the shallow than deep orthography.
Resumo:
Tumor Suppressor Candidate 2 (TUSC2) is a novel tumor suppressor gene located in the human chromosome 3p21.3 region. TUSC2 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous TUSC2 protein could be detected in a majority of lung cancer cell lines. Mechanisms regulating TUSC2 protein expression and its inactivation in primary lung cancer cells are largely unknown. We investigated the role of the 5’- and 3’-untranslated regions (UTRs) of the TUSC2 gene in the regulation of TUSC2 protein expression. We found that two small upstream open-reading frames (uORFs) in the 5’UTR of TUSC2 could markedly inhibit the translational initiation of TUSC2 protein by interfering with the “scanning” of the ribosome initiation complexes. Site-specific stem-loop array reverse transcription-polymerase chain reaction (SLA-RT-PCR) verified several micoRNAs (miRNAs) targeted at 3’UTR and directed TUSC2 cleavage and degradation. In addition, we used the established let-7-targeted high mobility group A2 (Hmga2) mRNA as a model system to study the mechanism of regulation of target mRNA by miRNAs in mammalian cells under physiological conditions. There have been no evidence of direct link between mRNA downregulation and mRNA cleavages mediated by miRNAs. Here we showed that the endonucleolytic cleavages on mRNAs were initiated by mammalian miRNA in seed pairing style. Let-7 directed cleavage activities among the eight predicted potential target sites have varied efficiency, which are influenced by the positional and the structural contexts in the UTR. The 5’ cleaved RNA fragments were mostly oligouridylated at their 3’-termini and accumulated for delayed 5’–3’ degradation. RNA fragment oligouridylation played important roles in marking RNA fragments for delayed bulk degradation and in converting RNA degradation mode from 3’–5’ to 5’–3’ with cooperative efforts from both endonucleolytic and non-catalytic miRNA-induced silencing complex (miRISC). Our findings point to a mammalian miRNA-mediated mechanism for the regulation of mRNA that miRNA can decrease target mRNA through target mRNA cleavage and uridine addition