540 resultados para Polyelectrolyte Multilayers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption and reaction of ethanol over Pt{1 1 1} has been investigated by Fast XPS and TPD. Ethanol adsorbs molecularly at 100 K, with a saturation coverage of 0.44 ML giving rise to C 1s components with binding energies of 283.7 eV (CH3–) and 284.8 eV (–H2COH). Ethanol multilayers desorb above 150 K, while ∼60% of the monolayer desorbs intact above 200 K in competition with decomposition pathways. Reaction initially proceeds via progressive dehydrogenation to form a metastable acetyl intermediate with components at 283.5 eV (CH3–) and 285.2 eV (-C=O), which in turn undergoes decarbonylation above 250 K to chemisorbed CO and methyl groups. A significant fraction of the latter are hydrogenated above 270 K, desorbing as CH4, with the remainder further decomposing to liberate H2 and surface CHx moeities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed mainly to evaluate the influence of xanthan gum (XG) and carboxymethylcellulose (CMC) in the filtration process of water-based drilling fluids, considering the conformational changes suffered by the polyelectrolyte with the addition of sodium chloride (NaCl) in different concentrations (0.17, 0.34 and 0.51 mol.L-1). It was also evaluated the behavior of the fluid by the addition of calcium carbonate (CaCO3) in pure water and in brine. Seeking a better understanding of the interaction between the polymers used and CaCO3, polymer adsorption analyzes were performed using a depletion method, which yielded a higher percentage of adsorption of Xanthan Gum in this material (29%), which can justify the formation of a thin and waterproof filter cake for drilling fluids containing this polymer. However, the best values of apparent viscosity (20 and 24 mPa.s) and volume of filtrate (8.0 and 8.1 mL) were obtained for the systems consisting of xanthan gum, CMC and CaCO3, in NaCl aqueous solutions concentrations of 0.34 and 0.51 mol.L-1, respectively. The values can be related to the presence of CMC that increases the apparent viscosity and reduces the volume of filtrate. In addition, the CaCO3 added acts as a bridging agent, promoting the formation of a less permeable filter cake

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyelectrolyte complexes (PECs) nanoparticles were prepared using chitosan and sodium polymethacrylate. The complex formation was investigated using turbidimetry, conductometry, viscometry, and dynamic light scattering. The presence of excess positive charges was evidenced by zeta potential measurements. The particle diameter was characterized by dynamic light scattering and the morphology by atomic force microscopy. In all experiments an abrupt change in behavior was observed at a carboxyl:amino molar ratio around 0.7−0.8. Those changes in behavior were related to a proposed mechanism of complex formation based on the decrease of macromolecular dimensions of soluble polyelectrolyte complex clusters, followed by phase segregation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advancement of nanotechnology in the synthesis and characterisation of nanoparticles (NP's) has played an important role in the development of new technologies for various applications of nano-scale materials that have unique properties. The scientific development in the last decades in the field of nanotechnology has sought ceaselessly, the discovery of new materials for the most diverse applications, such as biomedical areas, chemical, optical, mechanical and textiles. The high bactericidal efficiency of metallic nanoparticles (Au and Ag), among other metals is well known, due to its ability to act in the DNA of fungi, viruses and bacteria, interrupting the process of cellular respiration, making them important means of study, in addition to its ability to protect UVA and UVB. The present work has as its main objective the implementation of an innovative method in the impregnation of nanoparticles of gold in textile substrate, functionalized with chitosan, by a dyeing process by exhaustion, with the control of temperature, time and velocity, thus obtaining microbial characteristics and UV protection. The exhausted substrates with colloidal solutions of NPAu's presented the colours, lilac and red (soybean knits) due to their surface plasmon peak around 520-540 nm. The NPAu's were synthesized chemically, using sodium citrate as a reducing agent and stabilizer. The material was previously cationised with chitosan, a natural polyelectrolyte, with the purpose of functionalising it to enhance the adsorption of colloid, at concentrations of 5, 7, 10 and 20 % of the bonding agent on the weight of the material (OWM). It was also observed, through an experimental design 23 , with 3 central points, which was the best process of exhaustion of the substrates, using the following factors: Time (min.), temperature (OC) and concentration of the colloid (%), having as a response to variable K/S (ABSORBÂNCIA/ Kubelka-Munk) of the fibres. Furthermore, it was evidenced as the best response, the following parameters: concentration 100%, temperature 70 ºC and time 30 minutes. The substrate with NPAu was characterised by XRD; thermal analysis using TGA; microstructural study using SEM/EDS and STEM, thus showing the NP on the surface of the substrate confirming the presence of the metal. The substrates showed higher washing fastness, antibacterial properties and UV radiation protection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intelligent and functional Textile Materials have been widely developed and researched with the purpose of being used in several areas of science and technology. These fibrous materials require different chemical and physical properties to obtain a multifunctional material. With the advent of nanotechnology, the techniques developed, being used as essential tools to characterize these new materials qualitatively. Lately the application of micro and nanomaterials in textile substrates has been the objective of many studies, but many of these nanomaterials have not been optimized for their application, which has resulted in increased costs and environmental pollution, because there is still no satisfactory effluent treatment available for these nanomaterials. Soybean fiber has low adsorption for thermosensitive micro and nanocapsules due to their incompatibility of their surface charges. For this reason, in this work initially chitosan was synthesized to functionalise soybean fibres. Chitosan is a natural polyelectrolyte with a high density of positive charges, these fibres have negative charges as well as the micro/nanocápsules, for this reason the chitosan acts as auxiliary agent to cationize in order to fix the thermosensitive microcapsules in the textile substrate. Polyelectrolyte was characterized using particle size analyses and the measurement of zeta potential. For the morphological analysis scanning Electron Microscopy (SEM) and x-Ray Diffraction (XRD) and to study the thermal properties, thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Near Infrared Spectroscopy analysis in the Region of the Fourier Transform Infrared (FTIR), colourimetry using UV-VIS spectrum were simultaneously performed on the substrate. From the measurement of zeta potential and in the determination of the particle size, stability of electrostatic chitosan was observed around 31.55mV and 291.0 nm respectively. The result obtained with (GD) for chitosan extracted from shrimp was 70 %, which according to the literature survey can be considered as chitosan. To optimize the dyeing process a statistical software, Design expert was used. The surface functionalisation of textile substrate with 2% chitosan showed the best result of K/S, being the parameter used for the experimental design, in which this showed the best response of dyeing absorbance in the range of 2.624. It was noted that soy knitting dyed with the thermosensitive micro andnanocapsules property showed excellent washing solidity, which was observed after 25 home washes, and significant K/S values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic multilayers are the support for the production of spintronic devices, representing great possibilities for miniaturized electronics industry. having the control to produce devices as well as their physical properties from simple multilayer films to highly complex at the atomic scale is a fundamental need for progress in this area, in recent years has highlighted the production of organic and flexible spintronic devices. Because of this trend, the objective of this work was to produce magnetic multilayers deposited on flexible substrate using magnetron sputtering dc technique. Three sets of samples were prepared. The first set composed of the trilayer type CoFe=Cu(t)=CoFe with different thickness of the metallic spacer. The second set consists of two multilayer subgroups, CoFe=Cu in the presence of IrMn layer as a buffer and the next multilayer as cap layer. The third set consisting of non-magnetostrictive multilayer permalloy (Py=Ta and Py=Ag) on flexible substrate and glass. The magnetic properties, were investigated by magnetometry measurements, ferromagnetic resonance and magnetoimpedance (MI), measurements were carried out at room temperature with the magnetic field always applied on the sample plane. For structural analysis, the diffraction X-ray was used. The results of the trilayer showed a high uniaxial anisotropy field for the sample with a spacer of 4.2 nm. For the multilayer in the presence of IrMn layer as the buffer, the study of static and dynamic magnetic properties showed isotropic behavior. For the multilayer in the presence of IrMn layer as a cap, the results of static magnetic properties of the magnetic behavior exhibited a spin valve structure type. However there was a disagreement with results of ferromagnetic resonance measurements, which was justified by the contribution of the unstable and stable grain to the rotatable anisotropy and Exchange bias in ferromagneticantiferromagnetic interface. The third serie of samples showed similar results behavior for the MI Ag multilayers spacer in both substrates. There are also significant MI changes with the Ta spacer, possible associated with the compressive stress on the flexible substrate sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A facile spin cast route was developed to convert perpendicularly aligned nanorod assemblies of cadmium chalcogenides into their silver and copper analogues. The assemblies are rapidly cation exchanged without affecting either the individual rod dimensions or collective superlattice order extending over several multilayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of DNA as a polymeric building material transcends its function in biology and is exciting in bionanotechnology for applications ranging from biosensing, to diagnostics, and to targeted drug delivery. These applications are enabled by DNA’s unique structural and chemical properties, embodied as a directional polyanion that exhibits molecular recognition capabilities. Hence, the efficient and precise synthesis of high molecular weight DNA materials has become key to advance DNA bionanotechnology. Current synthesis methods largely rely on either solid phase chemical synthesis or template-dependent polymerase amplification. The inherent step-by-step fashion of solid phase synthesis limits the length of the resulting DNA to typically less than 150 nucleotides. In contrast, polymerase based enzymatic synthesis methods (e.g., polymerase chain reaction) are not limited by product length, but require a DNA template to guide the synthesis. Furthermore, advanced DNA bionanotechnology requires tailorable structural and self-assembly properties. Current synthesis methods, however, often involve multiple conjugating reactions and extensive purification steps.

The research described in this dissertation aims to develop a facile method to synthesize high molecular weight, single stranded DNA (or polynucleotide) with versatile functionalities. We exploit the ability of a template-independent DNA polymerase−terminal deoxynucleotidyl transferase (TdT) to catalyze the polymerization of 2’-deoxyribonucleoside 5’-triphosphates (dNTP, monomer) from the 3’-hydroxyl group of an oligodeoxyribonucleotide (initiator). We termed this enzymatic synthesis method: TdT catalyzed enzymatic polymerization, or TcEP.

Specifically, this dissertation is structured to address three specific research aims. With the objective to generate high molecular weight polynucleotides, Specific Aim 1 studies the reaction kinetics of TcEP by investigating the polymerization of 2’-deoxythymidine 5’-triphosphates (monomer) from the 3’-hydroxyl group of oligodeoxyribothymidine (initiator) using in situ 1H NMR and fluorescent gel electrophoresis. We found that TcEP kinetics follows the “living” chain-growth polycondensation mechanism, and like in “living” polymerizations, the molecular weight of the final product is determined by the starting molar ratio of monomer to initiator. The distribution of the molecular weight is crucially influenced by the molar ratio of initiator to TdT. We developed a reaction kinetics model that allows us to quantitatively describe the reaction and predict the molecular weight of the reaction products.

Specific Aim 2 further explores TcEP’s ability to transcend homo-polynucleotide synthesis by varying the choices of initiators and monomers. We investigated the effects of initiator length and sequence on TcEP, and found that the minimum length of an effective initiator should be 10 nucleotides and that the formation of secondary structures close to the 3’-hydroxyl group can impede the polymerization reaction. We also demonstrated TcEP’s capacity to incorporate a wide range of unnatural dNTPs into the growing chain, such as, hydrophobic fluorescent dNTP and fluoro modified dNTP. By harnessing the encoded nucleotide sequence of an initiator and the chemical diversity of monomers, TcEP enables us to introduce molecular recognition capabilities and chemical functionalities on the 5’-terminus and 3’-terminus, respectively.

Building on TcEP’s synthesis capacities, in Specific Aim 3 we invented a two-step strategy to synthesize diblock amphiphilic polynucleotides, in which the first, hydrophilic block serves as a macro-initiator for the growth of the second block, comprised of natural and/or unnatural nucleotides. By tuning the hydrophilic length, we synthesized the amphiphilic diblock polynucleotides that can self-assemble into micellar structures ranging from star-like to crew-cut morphologies. The observed self-assembly behaviors agree with predictions from dissipative particle dynamics simulations as well as scaling law for polyelectrolyte block copolymers.

In summary, we developed an enzymatic synthesis method (i.e., TcEP) that enables the facile synthesis of high molecular weight polynucleotides with low polydispersity. Although we can control the nucleotide sequence only to a limited extent, TcEP offers a method to integrate an oligodeoxyribonucleotide with specific sequence at the 5’-terminus and to incorporate functional groups along the growing chains simultaneously. Additionally, we used TcEP to synthesize amphiphilic polynucleotides that display self-assemble ability. We anticipate that our facile synthesis method will not only advance molecular biology, but also invigorate materials science and bionanotechnology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente tesis es un estudio dedicado a la optimización y desarrollo de sistemas del tipo juntura túnel. La metodología utilizada para la realización de la tesis consistió, en primer lugar, en la optimización de las componentes independientes de la juntura túnel: electrodo y barrera aislante. Posteriormente se optimizaron los procesos de fabricación para el desarrollo y caracterización de dispositivos del tipo juntura túnel en su forma final. En la primera parte de la tesis se analizan detalladamente los resultados obtenidos de la caracterización eléctrica y topografica de barreras aislantes en sistemas electrodo - barrera. Los sistemas bicapas estudiados, GdBa_2Cu_3_7/SrTiO_3, Nb/Ba_0,05Sr_0,95TiO_3 y YBa_2Cu_3O_7/SrTiO_3, fueron caracterizados utilizando un microscopio de fuerza atómica en modo conductor. Se propuso un modelo fenomenológico basado en los resultados experimentales, que permitió la obtención de parámetros críticos para el desarrollo de dispositivos del tipo juntura túnel con nuevas funcionalidades. La información obtenida de la caracterización de los sistemas bicapas (homogeneidad de crecimiento, baja densidad de defectos y de pinholes) indican un muy buen control de los parámetros de crecimiento de las barreras. Por otro lado, se obtuvo un buen comportamiento aislante para espesores mayores a 2 nm sin la presencia de pinholes en la barrera. La similitud en la estequiometría de las barreras (SrTiO_3) permitió comparar los distintos sistemas estudiados en términos de conductividad eléctrica. Se verificó que el modelo fenomenológico permite comparar la conductividad eléctrica de los sistemas mediante uno de los parámetros definidos en el modelo fenomenológico (obtenido de los ajustes lineales de las curvas I(V)). De los 3 sistemas estudiados, las bicapas GdBa_2Cu_3O_7/SrTiO_3 presentaron un mayor valor de longitud de atenuación de los portadores de carga a través de la barrera y una muy baja densidad de defectos superficiales. Las bicapas YBa_2Cu_3O_7/SrTiO_3 y Nb/Ba_0,05Sr_0,95TiO_3 permitieron validar el modelo fenomenológico propuesto para el análisis de la respuesta corriente - voltaje obtenida con el microscopio de fuerza atómica en modo conductor. La segunda parte de la tesis abarca conceptos de magnetismo y microfabricación para el desarrollo de junturas túnel magnéticas. Durante la caracterización de las películas ferromagnéticas individuales de Co_90Fe_10 (CoFe) se logró aumentar valor del campo coercitivo de films de 10 nm de espesor al incrementar la temperatura de depósito. Esto se debe a un aumento del tamaño de grano de los films. El aumento de la temperatura del sustrato durante el crecimiento influye en la morfología y las propiedades magnéticas de los films de CoFe favoreciendo la formación de granos y la pérdida del eje preferencial de magnetización. Estos resultados permitieron la fabricación de sistemas Co_90Fe_10/M_gO/Co_90Fe_10 con distintas orientaciones relativas accesibles con campo magnético para el estudio del acople magnético entre los films de CoFe. La caracterización eléctrica de estos sistemas, particularmente la respuesta corriente - voltaje obtenida con el microscopio de fuerza atómica en modo conductor, indicó que las propiedades de transporte eléctrico de las junturas presentan un alto grado de reproducibilidad. Se analizó además la inuencia del sustrato utilizado en la corriente túnel que atraviesa la barrera aislante. Por otro lado, se discuten los fenómenos relacionados a la optimización de las propiedades magnéticas de electrodos ferromagnéticos para la fabricación de junturas túnel Co_90Fe_10/MgO/Co_90Fe_10 y Co_90Fe_10/MgO /Fe_20Ni_80. En particular, se estudió el acople magnético entre capas ferromagnéticas y la inuencia del sustrato utilizado para el crecimiento de las tricapas. La optimización de los electrodos magnéticos involucró el análisis de la inuencia de la presencia de un aislante entre dos capas magnéticas en el acople de los electrodos. Se logró el desacople de films de 10 nm de Co_90Fe_10 y Fe_20Ni_80 separados por un espaciador de MgO de 2 nm. Finalmente se detallan los pasos para la fabricación de una red de junturas túnel magnéticas y su caracterización eléctrica a bajas temperaturas. El sistema estudiado fue la tricapa Co_90Fe_10 (10 nm)/M_gO (8 nm)/ Fe_20Ni_80 (10 nm) crecido sobre un sustrato de M_gO. La caracterización eléctrica confirmó la buena calidad de la junturas fabricadas. Las junturas obtenidas presentaron un comportamiento altamente resistivo (~ MΩ). Las mediciones de la corriente túnel en función de la temperatura permitieron descartar la presencia de pinholes en la barrera. El transporte de los portadores de carga es por efecto túnel a través de la barrera aislante. Las curvas de conductancia diferencial permitieron calcular el valor medio de la altura de la barrera de potencial (φ = 3.1 eV) a partir del modelo de Brinkman. Los resultados obtenidos en cada uno de los capítulos se complementan y son relevantes para la optimización de junturas túnel, debido a que brindan información crítica para su correcto funcionamiento. En la presente tesis se lograron obtener los primeros avances para la fabricación de arreglos de junturas túnel que permitan el desarrollo de dispositivos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Owing to their capability of merging the properties of metals and conventional polymers, Conducting Polymers (CPs) are a unique class of carbon-based materials capable of conducting electrical current. A conjugated backbone is the hallmark of CPs, which can readily undergo reversible doping to different extents, thus achieving a wide range of electrical conductivities, while maintaining mechanical flexibility, transparency and high thermal stability. Thanks to these inherent versatility and attracting properties, from their discovery CPs have experienced incessant widespread in a great plethora of research fields, ranging from energy storage to healthcare, also encouraging the spring and growth of new scientific areas with highly innovative content. Nowadays, Bioelectronics stands out as one of the most promising research fields, dealing with the mutual interplay between biology and electronics. Among CPs, the polyelectrolyte complex poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS), especially in the form of thin films, has been emphasized as ideal platform for bioelectronic applications. Indeed, in the last two decades PEDOT:PSS has played a key role in the sensing of bioanalytes and living cells interfacing and monitoring. In the present work, development and characterization of two kinds of PEDOT:PSS-based devices for applications in Bioelectronics are discussed in detail. In particular, a low-cost amperometric sensor for the selective detection of Dopamine in a ternary mixture was optimized, taking advantage of the electrocatalytic and antifouling properties that render PEDOT:PSS thin films appealing tools for electrochemical sensing of bioanalytes. Moreover, the potentialities of this material to interact with live cells were explored through the fabrication of a microfluidic trapping device for electrical monitoring of 3D spheroids using an impedance-based approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente tesis es un estudio dedicado a la optimización y desarrollo de sistemas del tipo juntura túnel. La metodología utilizada para la realización de la tesis consistió, en primer lugar, en la optimización de las componentes independientes de la juntura túnel: electrodo y barrera aislante. Posteriormente se optimizaron los procesos de fabricación para el desarrollo y caracterización de dispositivos del tipo juntura túnel en su forma final. En la primera parte de la tesis se analizan detalladamente los resultados obtenidos de la caracterización eléctrica y topografica de barreras aislantes en sistemas electrodo - barrera. Los sistemas bicapas estudiados, GdBa_2Cu_3_7/SrTiO_3, Nb/Ba_0,05Sr_0,95TiO_3 y YBa_2Cu_3O_7/SrTiO_3, fueron caracterizados utilizando un microscopio de fuerza atómica en modo conductor. Se propuso un modelo fenomenológico basado en los resultados experimentales, que permitió la obtención de parámetros críticos para el desarrollo de dispositivos del tipo juntura túnel con nuevas funcionalidades. La información obtenida de la caracterización de los sistemas bicapas (homogeneidad de crecimiento, baja densidad de defectos y de pinholes) indican un muy buen control de los parámetros de crecimiento de las barreras. Por otro lado, se obtuvo un buen comportamiento aislante para espesores mayores a 2 nm sin la presencia de pinholes en la barrera. La similitud en la estequiometría de las barreras (SrTiO_3) permitió comparar los distintos sistemas estudiados en términos de conductividad eléctrica. Se verificó que el modelo fenomenológico permite comparar la conductividad eléctrica de los sistemas mediante uno de los parámetros definidos en el modelo fenomenológico (obtenido de los ajustes lineales de las curvas I(V)). De los 3 sistemas estudiados, las bicapas GdBa_2Cu_3O_7/SrTiO_3 presentaron un mayor valor de longitud de atenuación de los portadores de carga a través de la barrera y una muy baja densidad de defectos superficiales. Las bicapas YBa_2Cu_3O_7/SrTiO_3 y Nb/Ba_0,05Sr_0,95TiO_3 permitieron validar el modelo fenomenológico propuesto para el análisis de la respuesta corriente - voltaje obtenida con el microscopio de fuerza atómica en modo conductor. La segunda parte de la tesis abarca conceptos de magnetismo y microfabricación para el desarrollo de junturas túnel magnéticas. Durante la caracterización de las películas ferromagnéticas individuales de Co_90Fe_10 (CoFe) se logró aumentar valor del campo coercitivo de films de 10 nm de espesor al incrementar la temperatura de depósito. Esto se debe a un aumento del tamaño de grano de los films. El aumento de la temperatura del sustrato durante el crecimiento influye en la morfología y las propiedades magnéticas de los films de CoFe favoreciendo la formación de granos y la pérdida del eje preferencial de magnetización. Estos resultados permitieron la fabricación de sistemas Co_90Fe_10/M_gO/Co_90Fe_10 con distintas orientaciones relativas accesibles con campo magnético para el estudio del acople magnético entre los films de CoFe. La caracterización eléctrica de estos sistemas, particularmente la respuesta corriente - voltaje obtenida con el microscopio de fuerza atómica en modo conductor, indicó que las propiedades de transporte eléctrico de las junturas presentan un alto grado de reproducibilidad. Se analizó además la inuencia del sustrato utilizado en la corriente túnel que atraviesa la barrera aislante. Por otro lado, se discuten los fenómenos relacionados a la optimización de las propiedades magnéticas de electrodos ferromagnéticos para la fabricación de junturas túnel Co_90Fe_10/MgO/Co_90Fe_10 y Co_90Fe_10/MgO /Fe_20Ni_80. En particular, se estudió el acople magnético entre capas ferromagnéticas y la inuencia del sustrato utilizado para el crecimiento de las tricapas. La optimización de los electrodos magnéticos involucró el análisis de la inuencia de la presencia de un aislante entre dos capas magnéticas en el acople de los electrodos. Se logró el desacople de films de 10 nm de Co_90Fe_10 y Fe_20Ni_80 separados por un espaciador de MgO de 2 nm. Finalmente se detallan los pasos para la fabricación de una red de junturas túnel magnéticas y su caracterización eléctrica a bajas temperaturas. El sistema estudiado fue la tricapa Co_90Fe_10 (10 nm)/M_gO (8 nm)/ Fe_20Ni_80 (10 nm) crecido sobre un sustrato de M_gO. La caracterización eléctrica confirmó la buena calidad de la junturas fabricadas. Las junturas obtenidas presentaron un comportamiento altamente resistivo (~ MΩ). Las mediciones de la corriente túnel en función de la temperatura permitieron descartar la presencia de pinholes en la barrera. El transporte de los portadores de carga es por efecto túnel a través de la barrera aislante. Las curvas de conductancia diferencial permitieron calcular el valor medio de la altura de la barrera de potencial (φ = 3.1 eV) a partir del modelo de Brinkman. Los resultados obtenidos en cada uno de los capítulos se complementan y son relevantes para la optimización de junturas túnel, debido a que brindan información crítica para su correcto funcionamiento. En la presente tesis se lograron obtener los primeros avances para la fabricación de arreglos de junturas túnel que permitan el desarrollo de dispositivos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocomposite energetics are a relatively new class of materials that combine nanoscale fuels and oxidizers to allow for the rapid release of large amounts of energy. In thermite systems (metal fuel with metal oxide oxidizer), the use of nanomaterials has been illustrated to increase reactivity by multiple orders of magnitude as a result of the higher specific surface area and smaller diffusion length scales. However, the highly dynamic and nanoscale processes intrinsic to these materials, as well as heating rate dependencies, have limited our understanding of the underlying processes that control reaction and propagation. For my dissertation, I have employed a variety of experimental approaches that have allowed me to probe these processes at heating rates representative of free combustion with the goal of understanding the fundamental mechanisms. Dynamic transmission electron microscopy (DTEM) was used to study the in situ morphological change that occurs in nanocomposite thermite materials subjected to rapid (10^11 K/s) heating. Aluminum nanoparticle (Al-NP) aggregates were found to lose their nanostructure through coalescence in as little as 10 ns, which is much faster than any other timescale of combustion. Further study of nanoscale reaction with CuO determined that a condensed phase interfacial reaction could occur within 0.5-5 µs in a manner consistent with bulk reaction, which supports that this mechanism plays a dominant role in the overall reaction process. Ta nanocomposites were also studied to determine if a high melting point (3280 K) affects the loss of nanostructure and rate of reaction. The condensed phase reaction pathway was further explored using reactive multilayers sputter deposited onto thin Pt wires to allow for temperature jump (T-Jump) heating at rates of ~5x10^5 K/s. High speed video and a time of flight mass spectrometry (TOFMS) were used to observe ignition temperature and speciation as a function of bilayer thickness. The ignition process was modeled and a low activation energy for effective diffusivity was determined. T-Jump TOFMS along with constant volume combustion cell studies were also used to determine the effect of gas release in nanoparticle systems by comparing the reaction properties of CuO and Cu2O.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most commercially available reverse osmosis (RO) and nanofiltration (NF) membranes are based on the thin film composite (TFC) aromatic polyamide membranes. However, they have several disadvantages including low resistance to fouling, low chemical and thermal stabilities and limited chlorine tolerance. To address these problems, advanced RO/NF membranes are being developed from polyimides for water and wastewater treatments. The following three projects have resulted from my research. (1) Positively charged and solvent resistant NF membranes. The use of solvent resistant membranes to facilitate small molecule separations has been a long standing industry goal of the chemical and pharmaceutical industries. We developed a solvent resistant membrane by chemically cross-linking of polyimide membrane using polyethylenimine. This membrane showed excellent stability in almost all organic solvents. In addition, this membrane was positively charged due to the amine groups remaining on the surface. As a result, high efficiency (> 95%) and selectivity for multivalent heavy metal removal was achieved. (2) Fouling resistant NF membranes. Antifouling membranes are highly desired for “all” applications because fouling will lead to higher energy demand, increase of cleaning and corresponding down time and reduced life-time of the membrane elements. For fouling prevention, we designed a new membrane system using a coating technique to modify membrane surface properties to avoid adsorption of foulants like humic acid. A layer of water-soluble polymer such as polyvinyl alcohol (PVA), polyacrylic acid (PAA), polyvinyl sulfate (PVS) or sulfonated poly(ether ether ketone) (SPEEK), was adsorbed onto the surface of a positively charged membrane. The resultant membranes have a smooth and almost neutrally charged surface which showed better fouling resistance than both the positively charged NF membranes and commercially available negatively charged NTR-7450 membrane. In addition, these membranes showed high efficiency for removal of multivalent ions (> 95% for both cations and anions). Therefore, these antifouling surfaces can be potentially used for water softening, water desalination and wastewater treatment in a membrane bioreactor (MBR) process. (3) Thermally stable RO membranes. Commercial RO membranes cannot be used at temperature higher than 45°C due to the use of polysulfone substrate, which often limits their applications in industries. We successfully developed polyimides as the membrane substrate for thermally stable RO membranes due to their high thermal resistance. The polyimide-based composite polyamide membranes showed desalination performance comparable to the commercial TFC membrane. However, the key advantage of the polyimide-based membrane is its high thermal stability. As the feed temperature increased from 25oC to 95oC, the water flux increased 5 - 6 times while the salt rejection almost kept constant. This membrane appears to provide a unique solution for hot water desalination and also a feasible way to improve the water productivity by increasing the operating temperature without any drop in salt rejection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developing magnetic multilayers are essential for reducing the core eddy current losses in the integrated power magnetic components (inductors/transformers). PVD based processes are typically used to achieve the multilayers with thin dielectric spacers. However, those processes are costly, and can be difficult to integrate. It is evident that cost effective alternative is needed. In recent years, electrochemical processes have been investigated to address these issues. One such method would be to successive metallization of insulating photoresists acting as spacer layer (such as SU-8) with soft magnetic films (such as Ni-Fe-Co alloys). This paper describes an experimental procedure to fabricate magnetic multilayers with a thin variant of SU-8 2 (< 1.5 µm) as inter-layers for integrated micro-inductors/transformers for power conversion applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The subject of the present work is the synthesis of novel nanoscale objects, designed for self-propulsion under external actuation. The synthesized objects present asymmetric hybrid particles, consisting of a magnetic core and polymer flagella and their hydrodynamic properties under the actuation by external magnetic fields are investigated. The single-domain ferromagnetic cobalt ferrite nanoparticles are prepared by thermal decomposition of a mixture of metalorganic complexes based on iron (III) cobalt (II) in non-polar solvents. Further modification of the particles includes the growth of the silver particle on the surface of the cobalt ferrite particle to form a dumbbell-shaped heterodimer. Different possible mechanisms of dumbbell formation are discussed. A polyelectrolyte tail with ability to adjust the persistence length of the polymer, and thus the stiffness of the tail, by variation of pH is attached to the particles. A polymer tail consisting of a polyacrylic acid chain is synthesized by hydrolysis of poly(tert-butyl acrylate) obtained by atom transfer radical polymerization (ATRP). A functional thiol end-group enables selective attachment of the tail to the silver part of the dumbbell, resulting in an asymmetric functionalization of the dumbbells. The calculations on the propulsion force and the sperm number for the resulting particles reveal a theoretical possibility for the propelled motion. Under the actuation of the particles with flagella by alternating magnetic field an increase in the diffusion coefficient compared to non-actuated or non-functionalized particles is observed. Further development of such systems for application as nanomotors or in drug delivery is promising.