954 resultados para Polycyclic aromatic hydrocarbon


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Several occupational carcinogens are metabolized by polymorphic enzymes. The distribution of the polymorphic enzymes N-acetyltransferase 2 (NAT2; substrates: aromatic amines), glutathione S-transferase M1 (GSTM1; substrates: e.g., reactive metabolites of polycyclic aromatic hydrocarbons), and glutathione S-transferase T1 (GSTT1; substrates: small molecules with 1 - 2 carbon atoms) were investigated. Material and Methods: At the urological department in Lutherstadt Wittenberg, 136 patients with a histologically proven transitional cell cancer of the urinary bladder were investigated for all occupations performed for more than 6 months. Several occupational and non-occupational risk factors were asked. The genotypes of NAT2, GSTM1, and GSTT1 were determined from leucocyte DNA by PCR. Results: Compared to the general population in Middle Europe, the percentage of GSTT1 negative persons (22.1%) was ordinary; the percentage of slow acetylators (59.6%) was in the upper normal range, while the percentage of GSTM1 negative persons (58.8%) was elevated in the entire group. Shifts in the distribution of the genotypes were observed in subgroups who had been exposed to asbestos (6/6 GSTM1 negative, 5/6 slow acetylators), rubber manufacturing (8/10 GSTM1 negative), and chlorinated solvents (9/15 GSTM1 negative). Conclusions: The overrepresentation of GSTM1 negative bladder cancer patients also in this industrialized area and more pronounced in several occupationally exposed subgroups points to an impact of the GSTM1 negative genotype in bladder carcinogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although cytosolic glutathione S-transterase (GST) enzymes occupy a key position in biological detoxification processes, two of the most relevant human isoenzymes. GST1-1 and GSTM1-1, are genetically deleted (non-functional alleles GSTT1*0 and GsTM1*0) in a high percentage of the human population, with major ethnic differences. The structures of the GSTT and GSTM gene areas explain the underlying genetic processes. GSTT1-1 is highly conserved during evolution and plays a major role in phase-II biotransformation of a number of drugs and industrial chemicals. e.g. cytostatic drugs, hydrocarbons and halogenated hydrocarbons. GSTM1-1 is particularly relevant in the deactivation of carcinogenic intermediates of polycyclic aromatic hydrocarbons. Several lines of evidence Suggest that hGSTT1-1 and/or hGSTM1-1 play a role in the deactivation of reactive oxygen species that are likely to be involved in cellular processes of inflammation, ageing and degenerative diseases. There is cumulating evidence that combinations of the GSTM1*0 state with other genetic traits affecting the metabolism of carcinogens (CYP1A1, GSTP1) may predispose the aero-digestivc tract and lung, especially in smokers, to a higher risk of cancer. The GSTM1*0 status appears also associated with a modest increase in the risk of bladder cancer, consistent with a GSTM1 interaction with carcinogenic tobacco smoke constituents. Both human GST deletions, although largely counterbalanced by overlapping substrate affinities within the GST superfamily, have consequences when the organism comes into contact with distinct man-made chemicals. This appears relevant in industrial toxicology and in drug metabolism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Routine monitoring of environmental pollution demands simplicity and speed without sacrificing sensitivity or accuracy. The development and application of sensitive, fast and easy to implement analytical methodologies for detecting emerging and traditional water and airborne contaminants in South Florida is presented. A novel method was developed for quantification of the herbicide glyphosate based on lyophilization followed by derivatization and simultaneous detection by fluorescence and mass spectrometry. Samples were analyzed from water canals that will hydrate estuarine wetlands of Biscayne National Park, detecting inputs of glyphosate from both aquatic usage and agricultural runoff from farms. A second study describes a set of fast, automated LC-MS/MS protocols for the analysis of dioctyl sulfosuccinate (DOSS) and 2-butoxyethanol, two components of Corexit®. Around 1.8 million gallons of those dispersant formulations were used in the response efforts for the Gulf of Mexico oil spill in 2010. The methods presented here allow the trace-level detection of these compounds in seawater, crude oil and commercial dispersants formulations. In addition, two methodologies were developed for the analysis of well-known pollutants, namely Polycyclic Aromatic Hydrocarbons (PAHs) and airborne particulate matter (APM). PAHs are ubiquitous environmental contaminants and some are potent carcinogens. Traditional GC-MS analysis is labor-intensive and consumes large amounts of toxic solvents. My study provides an alternative automated SPE-LC-APPI-MS/MS analysis with minimal sample preparation and a lower solvent consumption. The system can inject, extract, clean, separate and detect 28 PAHs and 15 families of alkylated PAHs in 28 minutes. The methodology was tested with environmental samples from Miami. Airborne Particulate Matter is a mixture of particles of chemical and biological origin. Assessment of its elemental composition is critical for the protection of sensitive ecosystems and public health. The APM collected from Port Everglades between 2005 and 2010 was analyzed by ICP-MS after acid digestion of filters. The most abundant elements were Fe and Al, followed by Cu, V and Zn. Enrichment factors show that hazardous elements (Cd, Pb, As, Co, Ni and Cr) are introduced by anthropogenic activities. Data suggest that the major sources of APM were an electricity plant, road dust, industrial emissions and marine vessels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Amazon holds over half of the planet's remaining tropical forests and comprises the largest biodiversity in the world, accounting for approximately 60 % of the Brazilian territory. However, deforestation fires in the region causes serious problems to exposed human. The aim of this study was to evaluate the chemical compounds as well as the cellular and molecular effects after exposure to organic material extracted from particulate matter less than 10 µm (PM10) in the Amazon region. As for the chemical composition, n-alkanes analysis showed a prevalence of anthropogenic influence during the fires in the region. In addition, there was a predominance of monosaccharides from biomass burning markers. Also, the Polycyclic Aromatic Hydrocarbons (PAH) and their derivatives have also been identified in samples collected in the Amazon. By using the PAH concentrations was possible to calculate the BaP-equivalent and it was found that the dibenz(a) anthracene contributes with 83% to potential carcinogenic risk. As for the potential mutagenic risk, the benzo (a) pyrene is the HPA that has a major contribution in this analysis. It may be noted that the retene was the most abundant PAH. This compound was genotoxic and cause death by necrosis in the human lung cells. In biological tests, the data showed that organic PM10 is capable of causing genetic damage in both plant cells and in human lung cells. This damage cause an arrest in the G1 phase of the cell cycle exposed, increasing the expression of p53 and p21. Additionally, the PM10 caused cell death by apoptosis, increasing the foci of histone - H2AX. Given these results, it is important to emphasize the reduction and better control of biomass burning in the Amazon region thus improving the quality of health of the population being exposed. As clearly stated recently by the World Health Organization, the reduction of air pollution could save millions of lives annually.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brazil is among the largest cashew nut producers of the world. However, the roasting process is still carried out artisanally, especially in the Brazilian semiarid region. In face of this occupational problem, the aim of this study was to perform a physical-chemical characterization of the particulate matter (PM) emitted by the roasting of cashew nuts, as well as to determine the occupational risk and molecular mechanisms associated. The most evident PM characteristics were the prevalence of fine particles, typical biomass burning morphologies such as tar ball and the presence of the elements K, Cl, S, Ca and Fe. In addition, atmospheric modeling analyses suggest that these particles can reach neighboring regions of the emission source. Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic potential, such as benzo[a]pyrene, dibenz[a,h]anthracene, benzo[a]anthracene, benzo[b]fluoranthene, chrysene, benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene and benzo[j]fluoranthene were the most abundant PAHs found in the two air monitoring campaigns. Among the identified oxy-PAH the benzanthrone (7H-benz[d,e]anthracen-7-one) had the highest concentration and the evaluation of lifetime cancer risk showed an increase of 12 to 37 cases of cancer for every 10,000 exposed people. Chemical analysis of roasted cashew nuts identified the PAHs: phenanthrene, benzo[g,h,i]perylene, pyrene and benzo[a]pyrene, besides the 3-pentadecilfenol allergen (urushiol analogue) as prevalent. Occupational exposure to PAHs was confirmed by the increase of urinary 1-hydroxypyrene levels and genotoxic effects were evidenced by the increase on micronuclei and nuclear bud frequency in exfoliated buccal mucosa cells among the exposed workers. Other biomarkers of effects such as karyorrhexis, pyknotic, karyolytic, condensed chromatin and binucleated cells also have their frequencies increased when compared to an unexposed control group. The investigation of the molecular mechanisms associated with the PM organic extract showed cytotoxicity in human lung cell lines (A549) at concentrations ≥ 4 nM BaPeq. Using non-cytotoxic doses the extract was able to activate proteins involved in the DNA damage response pathway (Chk1 and p53). Moreover, the specific contribution of the four most representative PAHs in the cashew nut roasting sample showed that benzo[a]pyrene was the most efficient to activate Chk1 and p53. Finally, the organic extract was able to increase persistently the mRNA expression involved in the PAHs metabolism (CYP1A1 and CYP1B1), inflammatory response (IL-8 and TNF-α) and cell cycle arrest (CDKN1A) for DNA repair (DDB2). The high PM concentrations and its biological effects associated warn of the serious harmful effects of artisanal cashew nut roasting and urgent actions should be taken to the sustainable development of this activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brazil is among the largest cashew nut producers of the world. However, the roasting process is still carried out artisanally, especially in the Brazilian semiarid region. In face of this occupational problem, the aim of this study was to perform a physical-chemical characterization of the particulate matter (PM) emitted by the roasting of cashew nuts, as well as to determine the occupational risk and molecular mechanisms associated. The most evident PM characteristics were the prevalence of fine particles, typical biomass burning morphologies such as tar ball and the presence of the elements K, Cl, S, Ca and Fe. In addition, atmospheric modeling analyses suggest that these particles can reach neighboring regions of the emission source. Polycyclic aromatic hydrocarbons (PAHs) with carcinogenic potential, such as benzo[a]pyrene, dibenz[a,h]anthracene, benzo[a]anthracene, benzo[b]fluoranthene, chrysene, benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene and benzo[j]fluoranthene were the most abundant PAHs found in the two air monitoring campaigns. Among the identified oxy-PAH the benzanthrone (7H-benz[d,e]anthracen-7-one) had the highest concentration and the evaluation of lifetime cancer risk showed an increase of 12 to 37 cases of cancer for every 10,000 exposed people. Chemical analysis of roasted cashew nuts identified the PAHs: phenanthrene, benzo[g,h,i]perylene, pyrene and benzo[a]pyrene, besides the 3-pentadecilfenol allergen (urushiol analogue) as prevalent. Occupational exposure to PAHs was confirmed by the increase of urinary 1-hydroxypyrene levels and genotoxic effects were evidenced by the increase on micronuclei and nuclear bud frequency in exfoliated buccal mucosa cells among the exposed workers. Other biomarkers of effects such as karyorrhexis, pyknotic, karyolytic, condensed chromatin and binucleated cells also have their frequencies increased when compared to an unexposed control group. The investigation of the molecular mechanisms associated with the PM organic extract showed cytotoxicity in human lung cell lines (A549) at concentrations ≥ 4 nM BaPeq. Using non-cytotoxic doses the extract was able to activate proteins involved in the DNA damage response pathway (Chk1 and p53). Moreover, the specific contribution of the four most representative PAHs in the cashew nut roasting sample showed that benzo[a]pyrene was the most efficient to activate Chk1 and p53. Finally, the organic extract was able to increase persistently the mRNA expression involved in the PAHs metabolism (CYP1A1 and CYP1B1), inflammatory response (IL-8 and TNF-α) and cell cycle arrest (CDKN1A) for DNA repair (DDB2). The high PM concentrations and its biological effects associated warn of the serious harmful effects of artisanal cashew nut roasting and urgent actions should be taken to the sustainable development of this activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The behaviour and fate of spilled oil in harsh marine environments, such as the North Atlantic and the Arctic Ocean are complex due to environmental factors and the composition of the crude. In order to develop appropriate oil spill prevention and management methods, we must first understand how the oil behaves in these harsh environmental conditions. This study focuses on determining the fate of oil in harsh marine environments by first identifying target compounds in the oil that can be used to determine the fate of a spill. This thesis presents the partitioning behaviour of six polycyclic aromatic hydrocarbons (PAHs), which represent different groups, and phenols in cold conditions. The smallest PAH, naphthalene, dominated in terms of concentration in water accommodated fraction (WAF) of oil, while the larger ringed PAHs presented at lower concentrations. The smallest oil-water partition coefficient was recorded by phenol which partitioned into the seawater more quickly than PAHs. The partitioning of larger PAHs was slower and they indicated high partition coefficients. The oil partitioning increased slightly as temperature increased from 4ᴼC to 15ᴼC. The oil loading (0.1 g/L to 10 g/L) also contributed in deciding the concentrations in water. The use of chemical dispersants is a common response to spills. This study identified that chemical dispersants can change the fate of an oil spill by increasing the availability of oil in seawater. The concentration of larger PAHs such as pyrene and chrysene increased significantly with the application of dispersants. The information obtained are used in developing a molecular imprinted polymer (MIP) sensor to identify oil spills in the North Atlantic Ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute exposures to some individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures are known to cause cardiac malformations and edema in the developing fish embryo. However, the heart is not the only organ impacted by developmental PAH exposure. The developing brain is also affected, resulting in lasting behavioral dysfunction. While acute exposures to some PAHs are teratogenically lethal in fish, little is known about the later life consequences of early life, lower dose subteratogenic PAH exposures. We sought to determine and characterize the long-term behavioral consequences of subteratogenic developmental PAH mixture exposure in both naive killifish and PAH-adapted killifish using sediment pore water derived from the Atlantic Wood Industries Superfund Site. Killifish offspring were embryonically treated with two low-level PAH mixture dilutions of Elizabeth River sediment extract (ERSE) (TPAH 5.04 μg/L and 50.4 μg/L) at 24h post fertilization. Following exposure, killifish were raised to larval, juvenile, and adult life stages and subjected to a series of behavioral tests including: a locomotor activity test (4 days post-hatch), a sensorimotor response tap/habituation test (3 months post hatch), and a novel tank diving and exploration test (3months post hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 5-month rearing period. Developmental PAH exposure caused short-term as well as persistent behavioral impairments in naive killifish. In contrast, the PAH-adapted killifish did not show behavioral alterations following PAH exposure. PAH mixture exposure caused increased mortality in reference killifish over time; yet, the PAH-adapted killifish, while demonstrating long-term rearing mortality, had no significant changes in mortality associated with ERSE exposure. This study demonstrated that early embryonic exposure to PAH-contaminated sediment pore water caused long-term locomotor and behavioral alterations in killifish, and that locomotor alterations could be observed in early larval stages. Additionally, our study highlights the resistance to behavioral alterations caused by low-level PAH mixture exposure in the adapted killifish population. Furthermore, this is the first longitudinal behavioral study to use killifish, an environmentally important estuarine teleost fish, and this testing framework can be used for future contaminant assessment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Elizabeth River system is an estuary in southeastern Virginia, surrounded by the towns of Chesapeake, Norfolk, Portsmouth, and Virginia Beach. The river has played important roles in U.S. history and has been the location of various military and industrial activities. These activities have been the source of chemical contamination in this aquatic system. Important industries, until the 1990s, included wood treatment plants that used creosote, an oil-derived product that is rich in polycyclic aromatic hydrocarbons (PAH). These plants left a legacy of PAH pollution in the river, and in particular Atlantic Wood Industries is a designated Superfund site now undergoing remediation. Numerous studies examined the distribution of PAH in the river and impacts on resident fauna. This review focuses on how a small estuarine fish with a limited home range, Fundulus heteroclitus (Atlantic killifish or mummichog), has responded to this pollution. While in certain areas of the river this species has clearly been impacted, as evidenced by elevated rates of liver cancer, some subpopulations, notably the one associated with the Atlantic Wood Industries site, displayed a remarkable ability to resist the marked effects PAH have on the embryonic development of fish. This review provides evidence of how pollutants have acted as evolutionary agents, causing changes in ecosystems potentially lasting longer than the pollutants themselves. Mechanisms underlying this evolved resistance, as well as mechanisms underlying the effects of PAH on embryonic development, are also described. The review concludes with a description of ongoing and promising efforts to restore this historic American river.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data are presented on concentration and composition of aliphatic and polycyclic aromatic hydrocarbons (HC) in water, suspended matter (collected with a Juday net and by a separator), and in bottom sediments of the White Sea. It was found that during the last years the level of aliphatic HC concentrations in waters of the White Sea (aver. 18 µg/l) practically did not change and was comparable with average concentrations in shelf areas of the World Ocean. In water and bottom sediments distribution of HC is determined by discharge of river marginal filters. Here sedimentation of the bulk of anthropogenic HC occurs. That is why a grain-size controlling factor is not active in the zone of the river depocenter (in particular, of the North Dvina River). The same reasons most probably may explain differences in degree of geochemical relationships between contents of TOC and HC in suspended matter and bottom sediments. After passing through marginal filters natural HC are dominant in all migration forms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The polar compound (NSO) fractions of seabed petroleums and sediment extracts from the Guaymas Basin hydrothermal system have been analyzed by gas chromatography and gas chromatography-mass spectrometry. The oils were collected from the interiors and exteriors of high temperature hydrothermal vents and represent hydrothermal pyrolysates that have migrated to the seafloor by hydrothermal fluid circulation. The downcore samples are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds correlated with samples exhibiting a high degree of thermal maturity. Several homologous series of related ketone isomers are enriched in the interiors of the hydrothermal vent samples or in hydrothermally-altered sequences of the downcore sediments (DSDP Holes 477 and 481A). The n-alkanones range in carbon number from C11 to C33 with a Cmax from 14 to 23, distributions that are similar to those of the n-alkanes. The alkan-2-ones are usually in highest concentrations, with lower amounts of 3-, 4-, 5-, 6-, 7- (and higher) alkanones, and they exhibit no carbon number preference (there is an odd carbon number preference of alkanones observed for downcore samples). The alkanones are enriched in the interiors of the hydrothermal vent spires or in downcore hydrothermally-altered sediments, indicating an origin at depth or in the hydrothermal fluids and not from an external biogenic deposition. Minor amounts of C13 and C18 isoprenoid ketones are also present. Simulation of the natural hydrothermal alternation process by laboratory hydrous pyrolysis techniques provided information regarding the mode of alkanone formation. Hydrous pyrolysis of n-C32H66 at 350°C for 72 h with water only or water with inorganic additives has been studied using a stainless steel reaction vessel. In each experiment oxygenated hydrocarbons, including alkanones, were formed from the n-alkane. The product distributions indicate a reaction pathway consisting of n-alkanes and a-olefins as primary cracking products with internal olefins and alkanones as secondary reaction products. Hydrous pyrolyses of Messel shale spiked with molecular probes have been performed under similar time and temperature constraints to produce alkanone distributions like those found in the hydrothermal vent petroleums.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study analysed the levels of androgen receptor antagonist activity in extracts of coastal sediments sampled from estuaries in southern UK and northern France. Anti-androgenic (AA) activity varied between <0.2 and 224.3±38.4μg flutamide equivalents/g dry weight of sediment and was significantly correlated with the total organic carbon and silt content of samples. AA activity was detected in tissues extracts of clams, Scrobicularia plana, sampled from a contaminated estuary, some of which was due to uptake of a series of 4 or 5 ring polycyclic aromatic hydrocarbons (PAHs). Initial studies also indicated that fractionated extracts of male, but not female, clams also contained androgen receptor agonist activity due to the presence of dihydrotestosterone in tissues. This study reveals widespread contamination of coastal sediments of the Transmanche region with anti-androgenic compounds and these contaminants should be investigated for their potential to disrupt sexual differentiation in aquatic organisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study analysed the levels of androgen receptor antagonist activity in extracts of coastal sediments sampled from estuaries in southern UK and northern France. Anti-androgenic (AA) activity varied between <0.2 and 224.3±38.4μg flutamide equivalents/g dry weight of sediment and was significantly correlated with the total organic carbon and silt content of samples. AA activity was detected in tissues extracts of clams, Scrobicularia plana, sampled from a contaminated estuary, some of which was due to uptake of a series of 4 or 5 ring polycyclic aromatic hydrocarbons (PAHs). Initial studies also indicated that fractionated extracts of male, but not female, clams also contained androgen receptor agonist activity due to the presence of dihydrotestosterone in tissues. This study reveals widespread contamination of coastal sediments of the Transmanche region with anti-androgenic compounds and these contaminants should be investigated for their potential to disrupt sexual differentiation in aquatic organisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The source, concentration, and potential impact of sewage discharge and incomplete organic matter (OM) combustion on sedimentary microbial populations were assessed in Dublin Bay, Ireland. Polycyclic aromatic hydrocarbons (PAHs) and faecal steroids were investigated in 30 surface sediment stations in the bay. Phospholipid fatty acid (PLFA) content at each station was used to identify and quantify the broad microbial groups present and the impact of particle size, total organic carbon (%TOC), total hydrogen (%H) and total nitrogen (%N) was also considered. Faecal sterols were found to be highest in areas with historical point sources of sewage discharge. PAH distribution was more strongly associated with areas of deposition containing high %silt and %clay content, suggesting that PAHs are from diffuse sources such as rainwater run-off and atmospheric deposition. The PAHs ranged from 12 to 3072 ng/g, with 10 stations exceeding the suggested effect range low (ERL) for PAHs in marine sediments. PAH isomer pair ratios and sterol ratios were used to determine the source and extent of pollution. PLFAs were not impacted by sediment type or water depth but were strongly correlated to, and influenced by PAH and sewage levels. Certain biomarkers such as 10Me16:0, i17:0 and a17:0 were closely associated with PAH polluted sediments, while 16:1ω9, 16:1ω7c, Cy17:0, 18:1ω6, i16:0 and 15:0 all have strong positive correlations with faecal sterols. Overall, the results show that sedimentary microbial communities are impacted by anthropogenic pollution.