927 resultados para Plant virus transmission
Resumo:
Ross River virus (RE) is a mosquito-borne arbovirus responsible for outbreaks of polyarthritic disease throughout Australia. To better understand human and environmental factors driving such events, 57 historical reports oil RR Outbreaks between 1896 and 1998 were examined collectively. The magnitude, regularity, seasonality, and locality of outbreaks were found to be wide ranging; however, analysis of climatic and tidal data highlighted that environmental conditions let differently ill tropical, arid, and temperate regions. Overall, rainfall seems to be the single most important risk factor, with over 90% of major outbreak locations receiving higher than average rainfall in preceding mouths. Many temperatures were close to average, particularly in tropical populations; however, in arid regions, below average maximum temperatures predominated, and ill southeast temperate regions, above average minimum temperatures predominated. High spring tides preceded coastal Outbreaks, both in the presence and absence of rainfall, and the relationship between rainfall and the Southern Oscillation Index and Lit Nina episodes suggest they may be useful predictive tools, but only ill southeast temperate regions. Such heterogeneity predisposing outbreaks supports the notion that there are different RE epidemiologies throughout Australia but also Suggests that generic parameters for the prediction and control of outbreaks are of limited use at a local level.
Resumo:
Sticky ovitraps (patent pending) were used to sample female Aedes aegypti (L.) weekly in a focus of dengue activity in Cairns, Queensland, Australia. In February 2003, transmission of dengue virus serotype 2 began in the suburb of Parramatta Park, peaking in mid-March 2003. This suburb features many older, unscreened houses with high populations of Ae. aegypti. Highest densities (2-3.5 females per trap per week) were obtained during peak dengue transmission (January and February) before mosquito control was initiated. Beginning in late March, female Ae. aegypti collected in sticky ovitraps were tested for dengue viral RNA by using a TaqMan reverse transcription-polymerase chain reaction assay. Dengue viral RNA was detected in six pools of Ae. aegypti collected in late March. The highest minimum infection rate was 116/1000 mosquitoes. After the initiation of larval control (containers treated with S-methoprene or lambda-cyhalothrin) and adult control (interior harborage sites sprayed with lambda-cyhalothrin) in early March, trap collections dropped to
Resumo:
Ross River virus is a common mosquito-borne arbovirus responsible for outbreaks of polyarthritic disease throughout Australia. To better understand climatic factors preceding outbreaks, we compared seasonal and monthly rainfall and temperature trends in outbreak and nonoutbreak years at four epidemic-prone locations. Our analyses showed that rainfall in outbreak years tended to be above average and higher than rainfall in nonoutbreak years. Overall temperatures were warmer during outbreak years. However, there were a number of distinct deviations in temperature, which seem to play a role in either promoting or inhibiting outbreaks. These preliminary findings show that climatic differences occur between outbreak and nonoutbreak years; however, seasonal and monthly trends differed across geo-climatic regions of the country. More detailed research is imperative if we are to optimize the surveillance and control of epidemic polyarthritic disease in Australia.
Resumo:
The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy (R) or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to I infected in 800 samples with pepper but never detecting more than I infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.
Resumo:
All single-stranded 'positive-sense' RNA viruses that infect mammalian, insect or plant cells rearrange internal cellular membranes to provide an environment facilitating virus replication. A striking feature of these unique membrane structures is the induction of 70-100 nm vesicles (either free within the cytoplasm, associated with other induced vesicles or bound within a surrounding membrane) harbouring the viral replication complex (RC). Although similar in appearance, the cellular composition of these vesicles appears to vary for different viruses, implying different organelle origins for the intracellular sites of viral RNA replication. Genetic analysis has revealed that induction of these membrane structures can be attributed to a particular viral gene product, usually a non-structural protein. This review will highlight our current knowledge of the formation and composition of virus RCs and describe some of the similarities and differences in RNA-membrane interactions observed between the virus families Flaviviridae and Picornaviridae.
Resumo:
The complete nucleocapsid (N) genes of eight Australian isolates of Lettuce necrotic yellows virus (LNYV) were amplified by reverse transcription PCR, cloned and sequenced. Phylogenetic analyses of these sequences revealed two distinct subgroups of LNYV isolates. Nucleotide sequences within each subgroup were more than 96% identical but heterogeneity between groups was about 20% at the nucleotide sequence level. However, less than 4% heterogeneity was noted at the amino acid level, indicating mostly third nucleotide position changes and a strong conservation for N protein function. There was no obvious geographical or temporal separation of the subgroups in Australia.
Resumo:
White spot syndrome virus ( WSSV) is a serious pathogen of aquatic crustaceans. Little is known about its transmission in vivo and the immune reaction of its hosts. In this study, the circulating haemocytes of crayfish, Procambarus clarkii, infected by WSSV, and primary haemocyte cultures inoculated with WSSV, were collected and observed by transmission electron microscopy and light microscopy following in situ hybridization. In ultrathin sections of infected haemocytes, the enveloped virions were seen to be phagocytosed in the cytoplasm and no viral particles were observed in the nuclei. In situ hybridization with WSSV-specific probes also demonstrated that there were no specific positive signals present in the haemocytes. Conversely, strong specific positive signals showed that WSSV replicated in the nuclei of gill cells. As a control, the lymphoid organ of shrimp, Penaeus monodon, infected by WSSV was examined by in situ hybridization which showed that WSSV did not replicate within the tubules of the lymphoid organ. In contrast to previous studies, it is concluded that neither shrimp nor crayfish haemocytes support WSSV replication.White spot syndrome virus (WSSV) is a serious pathogen of aquatic crustaceans. Little is known about its transmission in vivo and the immune reaction of its hosts. In this study, the circulating haemocytes of crayfish, Procambarus clarkii, infected by WSSV, and primary haemocyte cultures inoculated with WSSV, were collected and observed by transmission electron microscopy and light microscopy following in situ hybridization. In ultra-thin sections of infected haemocytes, the enveloped virions were seen to be phagocytosed in the cytoplasm and no viral particles were observed in the nuclei. In situ hybridization with WSSV-specific probes also demonstrated that there were no specific positive signals present in the haemocytes. Conversely, strong specific positive signals showed that WSSV replicated in the nuclei of gill cells. As a control, the lymphoid organ of shrimp, Penaeus monodon, infected by WSSV was examined by in situ hybridization which showed that WSSV did not replicate within the tubules of the lymphoid organ. In contrast to previous studies, it is concluded that neither shrimp nor crayfish haemocytes support WSSV replication.
Resumo:
Background There are no analytical studies of individual risks for Ross River virus (RRV) disease. Therefore, we set out to determine individual risk and protective factors for RRV disease in a high incidence area and to assess the utility of the case-control design applied for this purpose to an arbovirus disease. Methods We used a prospective matched case-control study of new community cases of RRV disease in the local government areas of Cairns, Mareeba, Douglas, and Atherton, in tropical Queensland, from January I to May 31, 1998. Results Protective measures against mosquitoes reduced the risk for disease. Mosquito coils, repellents, and citronella candles each decreased risk by at least 2-fold, with a dose-response for the number of protective measures used. Light-coloured clothing decreased risk 3-fold. Camping increased the risk 8-fold. Conclusions These risks were substantial and statistically significant, and provide a basis for educational programs on individual protection against RRV disease in Australia. Our study demonstrates the utility of the case-control method for investigating arbovirus risks. Such a risk analysis has not been done before for RRV infection, and is infrequently reported for other arbovirus infections.
Resumo:
A study was conducted to investigate the persistence of rabbit haemorrhagic disease virus (RHDV) in the environment. Virus was impregnated onto two carrier materials (cotton tape and bovine liver) and exposed to environmental conditions on pasture during autumn in New Zealand. Samples were collected after 1, 10, 44 and 91 days and the viability of the virus was determined by oral inoculation of susceptible 11- to 14-week-old New Zealand White rabbits. Evidence of RHDV infection was based on clinical and pathological signs and/or seroconversion to RHDV. Virus impregnated on cotton tape was viable at 10 days of exposure but not at 44 days, while in bovine liver it was still viable at 91 days. The results of this study suggest that RHDV in animal tissues such as rabbit carcasses can survive for at least 3 months in the field, while virus exposed directly to environmental conditions, such as dried excreted virus, is viable for a period of less than I month. Survival of RHDV in the tissues of dead animals could, therefore, provide a persistent reservoir of virus, which could initiate new outbreaks of disease after extended delays.
Resumo:
We report the assessment and validation of an NS1 epitope-blocking enzyme-linked immunosorbent assay (ELISA) for detection of antibodies to West Nile virus (WNV) in macaques. Sera from naturally infected Macaca nemestrina were tested by ELISA and plaque reduction neutralization test (PRNT). Results were correlated with hemagglutination inhibition (HAI) data. Our results demonstrate that the blocking ELISA rapidly and specifically detects WNV infection in M. nemestrina. In addition, the diagnostic value of 7 commercially available immunoassays (PanBio immunoglobulin [Ig] M ELISA, PanBio IgG ELISA, PanBio immunofluorescence assay (IFA), InBios IgG ELISA, InBios IgM ELISA, Focus Diagnostics IgG ELISA, and Focus Diagnostics IgM ELISA) in M. nemestrina was evaluated and compared with that of the epitope-blocking ELISA. The PanBio IgG ELISA was found to effectively diagnose WNV exposure in M. nemestrina. Further, PanBio IFA slides are fast and reliable screening tools for diagnosing flaviviral exposure in M. nemestrina.
Resumo:
We completed the genome sequence of Lettuce necrotic yellows virus (LNYV) by determining the nucleotide sequences of the 4a (putative phosphoprotein), 4b, M (matrix protein), G (glycoprotein) and L (polymerase) genes. The genome consists of 12,807 nucleotides and encodes six genes in the order 3' leader-N-4a(P)-4b-M-G-L-5' trailer. Sequences were derived from clones of a cDNA library from LNYV genomic RNA and from fragments amplified using reverse transcription-polymerase chain reaction. The 4a protein has a low isoelectric point characteristic for rhabdovirus phosphoproteins. The 4b protein has significant sequence similarities with the movement proteins of capillo- and trichoviruses and may be involved in cell-to-cell movement. The putative G protein sequence contains a predicted 25 amino acids signal peptide and endopeptidase cleavage site, three predicted glycosylation sites and a putative transmembrane domain. The deduced L protein sequence shows similarities with the L proteins of other plant rhabdoviruses and contains polymerase module motifs characteristic for RNA-dependent RNA polymerases of negative-strand RNA viruses. Phylogenetic analysis of this motif among rhabdoviruses placed LNYV in a group with other sequenced cytorhabdoviruses, most closely related to Strawberry crinkle virus. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fiji leaf gall (FLG) is an important virally induced disease in Australian sugarcane. It is confined to southern canegrowing areas, despite its vector, the delphacid planthopper Perkinsiella saccharicida, occurring in all canegrowing areas of Queensland and New South Wales. This disparity between distributions could be a result of successful containment of the disease through quarantine and/or geographical barriers, or because northern Queensland populations of Perkinsiella may be poorer vectors of the disease. These hypotheses were first tested by investigating variation in the ITS2 region of the rDNA fragment among eastern Australian and overseas populations of Perkinsiella. The ITS2 sequences of the Western Australian P. thompsoni and the Fijian P. vitiensis were distinguishable from those of P. saccharicida and there was no significant variation among the 26P. saccharicida populations. Reciprocal crosses of a northern Queensland and a southern Queensland population of P. saccharicida were fertile, so they may well be conspecific. Single vector transmission experiments showed that a population of P. saccharicida from northern Queensland had a higher vector competency than either of two southern Queensland populations. The frequency of virus acquisition in the vector populations was demonstrated to be important in the vector competency of the planthopper. The proportion of infected vectors that transmitted the virus to plants was not significantly different among the populations tested. This study shows that the absence of FLG from northern Queensland is not due to a lack of vector competency of the northern population of P. saccharicida.
Resumo:
The spatial heterogeneity in the risk of Ross River virus (family Togaviridae, genus Alphavirus, RRV) disease, the most common mosquito-borne disease in Australia, was examined in Redland Shire in southern Queensland, Australia. Disease cases, complaints from residents of intense mosquito biting exposure, and human population data were mapped using a geographic information system. Surface maps of RRV disease age-sex standardized morbidity ratios and mosquito biting complaint morbidity ratios were created. To determine whether there was significant spatial variation in disease and complaint patterns, a spatial scan analysis method was used to test whether the number of cases and complaints was distributed according to underlying population at risk. Several noncontiguous areas in proximity to productive saline water habitats of Aedes vigilax (Skuse), a recognized vector of RRV, had higher than expected numbers of RRV disease cases and complaints. Disease rates in human populations in areas which had high numbers of adult Ae. vigilax in carbon dioxide- and octenol-baited light traps were up to 2.9 times those in areas that rarely had high numbers of mosquitoes. It was estimated that targeted control of adult Ae. vigilax in these high-risk areas could potentially reduce the RRV disease incidence by an average of 13.6%. Spatial correlation was found between RRV disease risk and complaints from residents of mosquito biting. Based on historical patterns of RRV transmission throughout Redland Shire and estimated future human population growth in areas with higher than average RRV disease incidence, it was estimated that RRV incidence rates will increase by 8% between 2001 and 2021. The use of arbitrary administrative areas that ranged in size from 4.6 to 318.3 km2, has the potential to mask any small scale heterogeneity in disease patterns. With the availability of georeferenced data sets and high-resolution imagery, it is becoming more feasible to undertake spatial analyses at relatively small scales.
Resumo:
Co-suppression of transgenes and their homologous viral sequences by RNA silencing is a powerful strategy for achieving high-level virus resistance in plants. This review provides a brief overview of RNA silencing mechanisms in plants and discusses important transgene construct design features underpinning successful RNA silencing-mediated transgenic virus control. Application of those strategies to protect horticultural and field crops from virus infection and results of field tests are also provided. The effectiveness and stability of RNA-mediated transgenic resistance are assessed taking into account effects of viral, plant and environmental factors.
Resumo:
This study investigated the comparative susceptibility of indigenous Moo Laat and improved Large White/Landrace pig breeds to infection with classical swine fever virus (CSFV) under controlled conditions in the Lao People's Democratic Republic (Lao PDR). The Moo Laat (ML) and Large White/Landrace crossbreed (LWC) pigs were inoculated with a standard challenge strain designated Lao/Kham225 (infectivity titre of 10(2.75) TCID50/ml). The results demonstrated that both the native breed and an improved pig breed are fully susceptible to CSFV infection and the mortality rate is high. LWC pigs demonstrated lower (or shorter) survival times (50% survival time: 11 days), earlier and higher pyrexia and earlier onset of viraemia compared to ML pigs (50% survival time: 18 days). In the context of village-based pig production, the longer time from infection to death in native ML pigs means that incubating or early sick pigs are likely to be sold once an outbreak of CSF is recognized in a village. This increased longevity probably contributes to the maintenance and spread of disease in a population where generally the contact rate is low.