1000 resultados para Pigment concentrations
Resumo:
In this study the variations in surface reflectance properties and pigment concentrations of Antarctic moss over species, sites, microtopography and with water content were investigated. It was found that species had significantly different surface reflectance properties, particularly in the region of the red edge (approximately 700 nm), but this did not correlate strongly with pigment concentrations. Surface reflectance of moss also varied in the visible region and in the characteristics of the red edge over different sites. Reflectance parameters, such as the photochemical reflectance index (PRI) and cold hard band were useful discriminators of site, microtopographic position and water content. The PRI was correlated both with the concentrations of active xanthophyll-cycle pigments and the photosynthetic light use efficiency, F-v/F-m, measured using chlorophyll fluorescence. Water content of moss strongly influenced the amplitude and position of the red-edge as well as the PRI, and may be responsible for observed differences in reflectance properties for different species and sites. All moss showed sustained high levels of photoprotective xanthophyll pigments, especially at exposed sites, indicating moss is experiencing continual high levels of photochemical stress.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Five years (1979-1983) of Coastal Zone Color Scanner satellite ocean color data are used to examine seasonal patterns of phytoplankton pigment concentration along the Chilean coast from 20 degrees S to 45 degrees S. Four kilometer resolution, 2-4 day composites document the presence of filaments of elevated pigment concentration extending offshore throughout the study area, with maximum offshore extension at higher latitudes. In three years, 1979, 1981, and 1983, sufficient data exist in monthly composites to allow recreation of portions of the seasonal cycle. Data in 1979 are the most complete. Near-shore concentrations and cross-shelf extension of pigment concentrations in 1979 are maximum in austral winter throughout the study area and minimum in summer. Available data from 1981 and 1983 are consistent with this temporal pattern but with concentrations approximately double those of 1979. Seasonal, spatial patterns within 10 km of shore and 50 km offshore indicate a latitudinal discontinuity both in absolute concentration and in the magnitude of the seasonal cycle at approximately 33 degrees S in both 1979 and in the climatological time series. The discontinuity is strongest ill fall-winter and weakest in summer. South of this latitude, concentrations are relatively high (2-3 mg m(-3) in 1979), a strong seasonal cycle is present, and patterns 50 km offshore are correlated with those within 10 km of shore. North of 33 degrees S, concentrations are < 1.5 mg m(-3) (in 1979), and the seasonal cycle within 10 km of shore is present but much weaker and less obviously correlated with that 50 km offshore. The seasonal cycle of pigment concentrations is 180 degrees out of phase with monthly averaged upwelling favorable winds. Noncoincident Pathfinder sea surface temperature data show that over most latitudes, coastal low surface temperatures lag wind forcing by 1-2 months, but these too are out of phase with the pigment seasonal cycle. These data point to control of pigment patterns along the Chilean coast by the interaction of upwelling with circulation patterns unconnected to local wind forcing.
Resumo:
Little is known regarding the distribution of volatile halogenated organic compounds (halocarbons) in Antarctic waters, and their relation to biophysical variables. During the austral summer (December to January) in 2007-08 halocarbon and pigment concentrations were measured in the Amundsen (100-130ºW) and Ross Sea (158ºW- 160ºE). In addition, halocarbons were determined in air, snow and sea ice. The distribution of halocarbons was influenced to a large extent by sea ice, and to a much lesser extent by pelagic biota. Concentrations of naturally produced halocarbons were elevated in the surface mixed layer in ice covered areas compared to open waters in polynyas and in the bottom waters of the Ross Sea. Higher concentrations of halocarbons were also found in sea ice brine compared to the surface waters. Incubations of snow revealed an additional source of halocarbons. The distribution of halocarbons also varied considerably between the Amundsen and Ross Seas, mainly due to the different oceanographic settings. For iodinated compounds, weak correlations were found with the presence of pigments indicative of Phaeocystis, mainly in the Ross Sea. Saturation anomalies for the surface water and brine (in sea ice) were determined for the two indicator halocarbons bromoform and chloriodomethane. For bromoform, the surface water anomalies varied between -83 and 11%, whereas chloroiodomethane anomalies varied between -6 and 1,200%. The saturation anomalies for brine varied between -56 to 120% for bromoform and 91 to 22,000% for chloroiodomethane, indicating that sea ice could be a possible source both to the atmosphere and the surface waters. Polar waters can have a substantial impact on global halocarbon budgets and need to be included in large-scale assessments.
Resumo:
The impact of ambient ultraviolet (UV)-B radiation on the endemic bryophyte, Grimmia antarctici, was studied over 14 months in East Antarctica. Over recent decades, Antarctic plants have been exposed to the largest relative increase in UV-B exposure as a result of ozone depletion. We investigated the effect of reduced UV and visible radiation on the pigment concentrations, surface reflectance and physiological and morphological parameters of this moss. Plexiglass screens were used to provide both reduced UV levels (77%) and a 50% decrease in total radiation. The screen combinations were used to separate UV photoprotective from visible photoprotective strategies, because these bryophytes are growing in relatively high light environments compared with many mosses. G. antarctici was affected negatively by ambient levels of UV radiation. Chlorophyll content was significantly lower in plants grown under near-ambient UV, while the relative proportions of photoprotective carotenoids, especially beta-carotene and zeaxanthin, increased. However, no evidence for the accumulation of UV-B-absorbing pigments in response to UV radiation was observed. Although photosynthetic rates were not affected, there was evidence of UV effects on morphology. Plants that were shaded showed fewer treatment responses and these were similar to the natural variation observed between moss growing on exposed microtopographical ridges and in more sheltered valleys within the turf. Given that other Antarctic bryophytes possess UV-B-absorbing pigments which should offer better protection under ambient UV-B radiation, these findings suggest that G. antarctici may be disadvantaged in some settings under a climate with continuing high levels of springtime UV-B radiation.
Resumo:
Present theories of deep-sea community organization recognize the importance of small-scale biological disturbances, originated partly from the activities of epibenthic megafaunal organisms, in maintaining high benthic biodiversity in the deep sea. However, due to technical difficulties, in situ experimental studies to test hypotheses in the deep sea are lacking. The objective of the present study was to evaluate the potential of cages as tools for studying the importance of epibenthic megafauna for deep-sea benthic communities. Using the deep-diving Remotely Operated Vehicle (ROV) "VICTOR 6000", six experimental cages were deployed at the sea floor at 2500 m water depth and sampled after 2 years (2y) and 4 years (4y) for a variety of sediment parameters in order to test for caging artefacts. Photo and video footage from both experiments showed that the cages were efficient at excluding the targeted fauna. The cage also proved to be appropriate to deep-sea studies considering the fact that there was no fouling on the cages and no evidence of any organism establishing residence on or adjacent to it. Environmental changes inside the cages were dependent on the experimental period analysed. In the 4y experiment, chlorophyll a concentrations were higher in the uppermost centimeter of sediment inside cages whereas in the 2y experiment, it did not differ between inside and outside. Although the cages caused some changes to the sedimentary regime, they are relatively minor compared to similar studies in shallow water. The only parameter that was significantly higher under cages at both experiments was the concentration of phaeopigments. Since the epibenthic megafauna at our study site can potentially affect phytodetritus distribution and availability at the seafloor (e.g. via consumption, disaggregation and burial), we suggest that their exclusion was, at least in part, responsible for the increases in pigment concentrations. Cages might be suitable tools to study the long-term effects of disturbances caused by megafaunal organisms on the diversity and community structure of smaller-sized organisms in the deep sea, although further work employing partial cage controls, greater replication, and evaluating faunal components will be essential to unequivocally establish their utility.
Resumo:
The composition and abundance of algal pigments provide information on phytoplankton community characteristics such as photoacclimation, overall biomass and taxonomic composition. In particular, pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by high-performance liquid chromatography (HPLC) techniques applied to filtered water samples. This method, as well as other laboratory analyses, is time consuming and therefore limits the number of samples that can be processed in a given time. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an empirical orthogonal function (EOF) analysis to remote-sensing reflectance data derived from ship-based hyperspectral underwater radiometry and from multispectral satellite data (using the Medium Resolution Imaging Spectrometer - MERIS - Polymer product developed by Steinmetz et al., 2011, doi:10.1364/OE.19.009783) measured in the Atlantic Ocean. Subsequently we developed multiple linear regression models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multispectral resolution is chosen (i.e., eight bands, similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. As a demonstration of the utility of the approach, the fitted model based on satellite reflectance data as input was applied to 1 month of MERIS Polymer data to predict the concentration of those pigment groups for the whole eastern tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., < 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photophysiology.
Resumo:
In an extended deep-sea study the response of the benthic community to seasonally varying sedimentation rates of organic matter were investigated at a fixed abyssal site in the NE Atlantic (BIOTRANS station or JGOFS station L2 at 47°N-20°W, water depth >4500 m) on four legs of METEOR expedition 21 between March and August 1992. The vertical flux at 3500 m depth and temporal variations in the chloroplastic pigment concentration, a measure of phytodetritus deposition, and of total adenylates and total phospholipids, measures of benthic biomass, and of activity of hydrolytic enzymes were observed. The flux patterns in moored sediment traps of total chlorophyll, POC and total flux showed an early sedimentation peak in March/April 1992, followed by low fluxes in May and intermediate ones from June to August. Thus 1992 differed from other years, in which one large flux peak after the spring phytoplankton bloom was observed. Unusually high concentrations of chloroplastic pigments were consistently observed in March 1992, reflecting the early sedimentation input. At the same time biomass of small benthic organisms (bacteria to meiobenthos) and activity of hydrolytic enzymes were higher compared to values from March 1985 and from the following months in 1992. In May and August 1992 pigment concentrations and biomass and activity parameters in the sediment were lower than during previously observed depositions of phytodetrital matter in summer. The data imply that the deep ocean benthic community reacts to small sedimentation events with transient increases in metabolic activity and only small biomass production. The coupling between pelagic and benthic processes is so close that interannual variability in surface water production is "mirrored" by deep-sea benthic processes.
Resumo:
Coral bleaching events have become more frequent and widespread, largely due to elevated sea surface temperatures. Global climate change could lead to increased variability of sea surface temperatures, through influences on climate systems, e.g. El Nino Southern Oscillation (ENSO). Field observations in 1999, following a strong ENSO, revealed that corals bleached in winter after unusually cold weather. To explore the basis for these observations, the photosynthetic responses of the coral species Montipora digitata Studer were investigated in a series of temperature and light experiments. Small replicate coral colonies were exposed to ecologically relevant lower temperatures for varying durations and under light regimes that ranged from darkness to full sunlight. Photosynthetic efficiency was analyzed using a pulse amplitude modulated (PAM) fluorometer (F-0, F-m, F-v/F-m), and chlorophyll a (chl a) content and symbiotic dinoflagellate density were analyzed with spectrophotometry and microscopy, respectively. Cold temperature stress had a negative impact on M digitata colonies indicated by decreased photosynthetic efficiency (F-v/F-m), loss of symbiotic dinoflagellates and changes in photosynthetic pigment concentrations. Corals in higher light regimes were more susceptible to cold temperature stress, Moderate cold stress resulted in photoacclimatory responses, but severe cold stress resulted in photodamage, bleaching and increased mortality. Responses to cold temperature stress of M digitata appeared similar to that observed in corals exposed to warmer than normal temperatures, suggesting a common mechanism. The results of this study suggest that corals and coral reefs may also be impacted by exposure to cold as well as warm temperature extremes as climate change occurs.
Resumo:
Nas seringueiras, o substrato para a síntese do látex provém, em curto prazo, do processo fotossintético, realizado em sua maioria por folhas dos estratos sujeitos à radiação sub-saturante. Neste estudo, foram avaliados e comparados (1) os teores de pigmentos fotossintéticos (clorofilas a, b e carotenóides totais); (2) a espessura foliolar total e dos parênquimas clorofilianos; e (3) a área e peso da matéria seca foliar de folhas sombreadas, para seis clones de seringueira selecionados pelo Instituto Agronômico de Campinas (IAC), comparativamente ao tradicional clone RRIM 600. em média, os teores de clorofila total (a+b) e de carotenóides totais foram, respectivamente, de 3,14 e 1,04 mg g-1 de peso fresco, sempre superiores ou iguais ao da testemunha. A espessura foliolar média foi de 119,62 µm e mostrou grande variação entre os clones IAC, e destes quanto à testemunha. A área foliar média, de 219,17 cm², foi quase equivalente para todos os clones. A área foliar específica foi, em média, de 198,08 cm² g-1, e neste caso, o maior valor foi observado para o IAC 56, sendo os demais, inferiores ou equivalentes ao da testemunha. Os clones IAC 302 e IAC 303 mostraram-se estatisticamente similares ao RRIM 600 para todos os caracteres analisados, e uma relação com a produtividade foi sugerida para o clone IAC 303.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)