879 resultados para Physics Based Modeling
Resumo:
In the context of the investigation of the use of automated fingerprint identification systems (AFIS) for the evaluation of fingerprint evidence, the current study presents investigations into the variability of scores from an AFIS system when fingermarks from a known donor are compared to fingerprints that are not from the same source. The ultimate goal is to propose a model, based on likelihood ratios, which allows the evaluation of mark-to-print comparisons. In particular, this model, through its use of AFIS technology, benefits from the possibility of using a large amount of data, as well as from an already built-in proximity measure, the AFIS score. More precisely, the numerator of the LR is obtained from scores issued from comparisons between impressions from the same source and showing the same minutia configuration. The denominator of the LR is obtained by extracting scores from comparisons of the questioned mark with a database of non-matching sources. This paper focuses solely on the assignment of the denominator of the LR. We refer to it by the generic term of between-finger variability. The issues addressed in this paper in relation to between-finger variability are the required sample size, the influence of the finger number and general pattern, as well as that of the number of minutiae included and their configuration on a given finger. Results show that reliable estimation of between-finger variability is feasible with 10,000 scores. These scores should come from the appropriate finger number/general pattern combination as defined by the mark. Furthermore, strategies of obtaining between-finger variability when these elements cannot be conclusively seen on the mark (and its position with respect to other marks for finger number) have been presented. These results immediately allow case-by-case estimation of the between-finger variability in an operational setting.
Resumo:
This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system
Resumo:
Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50) = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.
Resumo:
ABSTRACT: BACKGROUND: The prevalence of obesity has increased in societies of all socio-cultural backgrounds. To date, guidelines set forward to prevent obesity have universally emphasized optimal levels of physical activity. However there are few empirical data to support the assertion that low levels of energy expenditure in activity is a causal factor in the current obesity epidemic are very limited. METHODS: The Modeling the Epidemiologic Transition Study (METS) is a cohort study designed to assess the association between physical activity levels and relative weight, weight gain and diabetes and cardiovascular disease risk in five population-based samples at different stages of economic development. Twenty-five hundred young adults, ages 25-45, were enrolled in the study; 500 from sites in Ghana, South Africa, Seychelles, Jamaica and the United States. At baseline, physical activity levels were assessed using accelerometry and a questionnaire in all participants and by doubly labeled water in a subsample of 75 per site. We assessed dietary intake using two separate 24-h recalls, body composition using bioelectrical impedance analysis, and health history, social and economic indicators by questionnaire. Blood pressure was measured and blood samples collected for measurement of lipids, glucose, insulin and adipokines. Full examination including physical activity using accelerometry, anthropometric data and fasting glucose will take place at 12 and 24 months. The distribution of the main variables and the associations between physical activity, independent of energy intake, glucose metabolism and anthropometric measures will be assessed using cross-section and longitudinal analysis within and between sites. DISCUSSION: METS will provide insight on the relative contribution of physical activity and diet to excess weight, age-related weight gain and incident glucose impairment in five populations' samples of young adults at different stages of economic development. These data should be useful for the development of empirically-based public health policy aimed at the prevention of obesity and associated chronic diseases.
Resumo:
Piecewise linear models systems arise as mathematical models of systems in many practical applications, often from linearization for nonlinear systems. There are two main approaches of dealing with these systems according to their continuous or discrete-time aspects. We propose an approach which is based on the state transformation, more particularly the partition of the phase portrait in different regions where each subregion is modeled as a two-dimensional linear time invariant system. Then the Takagi-Sugeno model, which is a combination of local model is calculated. The simulation results show that the Alpha partition is well-suited for dealing with such a system
Resumo:
Initial topography and inherited structural discontinuities are known to play a dominant role in rock slope stability. Previous 2-D physical modeling results demonstrated that even if few preexisting fractures are activated/propagated during gravitational failure all of those heterogeneities had a great influence on mobilized volume and its kinematics. The question we address in the present study is to determine if such a result is also observed in 3-D. As in 2-D previous models we examine geologically stable model configuration, based upon the well documented landslide at Randa, Switzerland. The 3-D models consisted of a homogeneous material in which several fracture zones were introduced in order to study simplified but realistic configurations of discontinuities (e.g. based on natural example rather than a parametric study). Results showed that the type of gravitational failure (deep-seated landslide or sequential failure) and resulting slope morphology evolution are the result of the interplay of initial topography and inherited preexisting fractures (orientation and density). The three main results are i) the initial topography exerts a strong control on gravitational slope failure. Indeed in each tested configuration (even in the isotropic one without fractures) the model is affected by a rock slide, ii) the number of simulated fracture sets greatly influences the volume mobilized and its kinematics, and iii) the failure zone involved in the 1991 event is smaller than the results produced by the analog modeling. This failure may indicate that the zone mobilized in 1991 is potentially only a part of a larger deep-seated landslide and/or wider deep seated gravitational slope deformation.
Resumo:
We present a continuum formalism for modeling growing random networks under addition and deletion of nodes based on a differential mass balance equation. As examples of its applicability, we obtain new results on the degree distribution for growing networks with a uniform attachment and deletion of nodes, and complete some recent results on growing networks with preferential attachment and uniform removal
Resumo:
The occurrence of negative values for Fukui functions was studied through the electronegativity equalization method. Using algebraic relations between Fukui functions and different other conceptual DFT quantities on the one hand and the hardness matrix on the other hand, expressions were obtained for Fukui functions for several archetypical small molecules. Based on EEM calculations for large molecular sets, no negative Fukui functions were found
Resumo:
We report here a new empirical density functional that is constructed based on the performance of OPBE and PBE for spin states and SN 2 reaction barriers and how these are affected by different regions of the reduced gradient expansion. In a previous study [Swart, Sol̀, and Bickelhaupt, J. Comput. Methods Sci. Eng. 9, 69 (2009)] we already reported how, by switching between OPBE and PBE, one could obtain both the good performance of OPBE for spin states and reaction barriers and that of PBE for weak interactions within one and the same (SSB-sw) functional. Here we fine tuned this functional and include a portion of the KT functional and Grimme's dispersion correction to account for π- π stacking. Our new SSB-D functional is found to be a clear improvement and functions very well for biological applications (hydrogen bonding, π -π stacking, spin-state splittings, accuracy of geometries, reaction barriers)
Resumo:
Mountains and mountain societies provide a wide range of goods and services to humanity, but they are particularly sensitive to the effects of global environmental change. Thus, the definition of appropriate management regimes that maintain the multiple functions of mountain regions in a time of greatly changing climatic, economic, and societal drivers constitutes a significant challenge. Management decisions must be based on a sound understanding of the future dynamics of these systems. The present article reviews the elements required for an integrated effort to project the impacts of global change on mountain regions, and recommends tools that can be used at 3 scientific levels (essential, improved, and optimum). The proposed strategy is evaluated with respect to UNESCO's network of Mountain Biosphere Reserves (MBRs), with the intention of implementing it in other mountain regions as well. First, methods for generating scenarios of key drivers of global change are reviewed, including land use/land cover and climate change. This is followed by a brief review of the models available for projecting the impacts of these scenarios on (1) cryospheric systems, (2) ecosystem structure and diversity, and (3) ecosystem functions such as carbon and water relations. Finally, the cross-cutting role of remote sensing techniques is evaluated with respect to both monitoring and modeling efforts. We conclude that a broad range of techniques is available for both scenario generation and impact assessments, many of which can be implemented without much capacity building across many or even most MBRs. However, to foster implementation of the proposed strategy, further efforts are required to establish partnerships between scientists and resource managers in mountain areas.
Resumo:
The information provided by the alignment-independent GRid Independent Descriptors (GRIND) can be condensed by the application of principal component analysis, obtaining a small number of principal properties (GRIND-PP), which is more suitable for describing molecular similarity. The objective of the present study is to optimize diverse parameters involved in the obtention of the GRIND-PP and validate their suitability for applications, requiring a biologically relevant description of the molecular similarity. With this aim, GRIND-PP computed with a collection of diverse settings were used to carry out ligand-based virtual screening (LBVS) on standard conditions. The quality of the results obtained was remarkable and comparable with other LBVS methods, and their detailed statistical analysis allowed to identify the method settings more determinant for the quality of the results and their optimum. Remarkably, some of these optimum settings differ significantly from those used in previously published applications, revealing their unexplored potential. Their applicability in large compound database was also explored by comparing the equivalence of the results obtained using either computed or projected principal properties. In general, the results of the study confirm the suitability of the GRIND-PP for practical applications and provide useful hints about how they should be computed for obtaining optimum results.
Resumo:
PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.
Resumo:
Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.
Resumo:
The past four decades have witnessed an explosive growth in the field of networkbased facility location modeling. This is not at all surprising since location policy is one of the most profitable areas of applied systems analysis in regional science and ample theoretical and applied challenges are offered. Location-allocation models seek the location of facilities and/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or several objectives generally related to the efficiency of the system or to the allocation of resources. This paper concerns the location of facilities or services in discrete space or networks, that are related to the public sector, such as emergency services (ambulances, fire stations, and police units), school systems and postal facilities. The paper is structured as follows: first, we will focus on public facility location models that use some type of coverage criterion, with special emphasis in emergency services. The second section will examine models based on the P-Median problem and some of the issues faced by planners when implementing this formulation in real world locational decisions. Finally, the last section will examine new trends in public sector facility location modeling.
Resumo:
The interpretation of the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) is based on a 4-factor model, which is only partially compatible with the mainstream Cattell-Horn-Carroll (CHC) model of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all crossloadings between latent variables and measures are fixed to zero in order to allow the model to be identified. However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation modeling (BSEM), among a sample of 249 French-speaking Swiss children (8-12 years). With BSEM, zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors plus a general intelligence factor better represented the structure of the WISC-IV than did the 4-factor structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation of the subtest scores.