1000 resultados para Pfaffian problem
Resumo:
The paper considers the job shop scheduling problem to minimize the makespan. It is assumed that each job consists of at most two operations, one of which is to be processed on one of m⩾2 machines, while the other operation must be performed on a single bottleneck machine, the same for all jobs. For this strongly NP-hard problem we present two heuristics with improved worst-case performance. One of them guarantees a worst-case performance ratio of 3/2. The other algorithm creates a schedule with the makespan that exceeds the largest machine workload by at most the length of the largest operation.
Resumo:
This paper studies the problem of scheduling jobs in a two-machine open shop to minimize the makespan. Jobs are grouped into batches and are processed without preemption. A batch setup time on each machine is required before the first job is processed, and when a machine switches from processing a job in some batch to a job of another batch. For this NP-hard problem, we propose a linear-time heuristic algorithm that creates a group technology schedule, in which no batch is split into sub-batches. We demonstrate that our heuristic is a -approximation algorithm. Moreover, we show that no group technology algorithm can guarantee a worst-case performance ratio less than 5/4.
Resumo:
This paper considers the problem of processing n jobs in a two-machine non-preemptive open shop to minimize the makespan, i.e., the maximum completion time. One of the machines is assumed to be non-bottleneck. It is shown that, unlike its flow shop counterpart, the problem is NP-hard in the ordinary sense. On the other hand, the problem is shown to be solvable by a dynamic programming algorithm that requires pseudopolynomial time. The latter algorithm can be converted into a fully polynomial approximation scheme that runs in time. An O(n log n) approximation algorithm is also designed whi finds a schedule with makespan at most 5/4 times the optimal value, and this bound is tight.
Resumo:
The paper considers a problem of scheduling n jobs in a two-machine open shop to minimize the makespan, provided that preemption is not allowed and the interstage transportation times are involved. This problem is known to be unary NP-hard. We present an algorithm that requires O (n log n) time and provides a worst-case performance ratio of 3/2.
Resumo:
We motivate, derive, and implement a multilevel approach to the travelling salesman problem.The resulting algorithm progressively coarsens the problem, initialises a tour, and then employs either the Lin-Kernighan (LK) or the Chained Lin-Kernighan (CLK) algorithm to refine the solution on each of the coarsened problems in reverse order.In experiments on a well-established test suite of 80 problem instances we found multilevel configurations that either improved the tour quality by over 25% as compared to the standard CLK algorithm using the same amount of execution time, or that achieved approximately the same tour quality over seven times more rapidly. Moreover, the multilevel variants seem to optimise far better the more clustered instances with which the LK and CLK algorithms have the most difficulties.
Resumo:
Numerical solutions of realistic 2-D and 3-D inverse problems may require a very large amount of computation. A two-level concept on parallelism is often used to solve such problems. The primary level uses the problem partitioning concept which is a decomposition based on the mathematical/physical problem. The secondary level utilizes the widely used data partitioning concept. A theoretical performance model is built based on the two-level parallelism. The observed performance results obtained from a network of general purpose Sun Sparc stations are compared with the theoretical values. Restrictions of the theoretical model are also discussed.
Resumo:
We consider a knapsack problem to minimize a symmetric quadratic function. We demonstrate that this symmetric quadratic knapsack problem is relevant to two problems of single machine scheduling: the problem of minimizing the weighted sum of the completion times with a single machine non-availability interval under the non-resumable scenario; and the problem of minimizing the total weighted earliness and tardiness with respect to a common small due date. We develop a polynomial-time approximation algorithm that delivers a constant worst-case performance ratio for a special form of the symmetric quadratic knapsack problem. We adapt that algorithm to our scheduling problems and achieve a better performance. For the problems under consideration no fixed-ratio approximation algorithms have been previously known.
Resumo:
Multilevel approaches to computational problems are pervasive across many areas of applied mathematics and scientific computing. The multilevel paradigm uses recursive coarsening to create a hierarchy of approximations to the original problem, then an initial solution is found for the coarsest problem and iteratively refined and improved at each level, coarsest to finest. The solution process is aided by the global perspective (or `global view') imparted to the optimisation by the coarsening. This paper looks at their application to the Vehicle Routing Problem.
Resumo:
We develop a fully polynomial-time approximation scheme (FPTAS) for minimizing the weighted total tardiness on a single machine, provided that all due dates are equal. The FPTAS is obtained by converting an especially designed pseudopolynomial dynamic programming algorithm.
Resumo:
This paper presents a simple approach to the so-called frame problem based on some ordinary set operations, which does not require non-monotonic reasoning. Following the notion of the situation calculus, we shall represent a state of the world as a set of fluents, where a fluent is simply a Boolean-valued property whose truth-value is dependent on the time. High-level causal laws are characterised in terms of relationships between actions and the involved world states. An effect completion axiom is imposed on each causal law, which guarantees that all the fluents that can be affected by the performance of the corresponding action are always totally governed. It is shown that, compared with other techniques, such a set operation based approach provides a simpler and more effective treatment to the frame problem.
Resumo:
We study the two-machine flow shop problem with an uncapacitated interstage transporter. The jobs have to be split into batches, and upon completion on the first machine, each batch has to be shipped to the second machine by a transporter. The best known heuristic for the problem is a –approximation algorithm that outputs a two-shipment schedule. We design a –approximation algorithm that finds schedules with at most three shipments, and this ratio cannot be improved, unless schedules with more shipments are created. This improvement is achieved due to a thorough analysis of schedules with two and three shipments by means of linear programming. We formulate problems of finding an optimal schedule with two or three shipments as integer linear programs and develop strongly polynomial algorithms that find solutions to their continuous relaxations with a small number of fractional variables
Resumo:
We discuss the application of the multilevel (ML) refinement technique to the Vehicle Routing Problem (VRP), and compare it to its single-level (SL) counterpart. Multilevel refinement recursively coarsens to create a hierarchy of approximations to the problem and refines at each level. A SL algorithm, which uses a combination of standard VRP heuristics, is developed first to solve instances of the VRP. A ML version, which extends the global view of these heuristics, is then created, using variants of the construction and improvement heuristics at each level. Finally some multilevel enhancements are developed. Experimentation is used to find suitable parameter settings and the final version is tested on two well-known VRP benchmark suites. Results comparing both SL and ML algorithms are presented.
Resumo:
We discuss the application of the multilevel (ML) refinement technique to the Vehicle Routing Problem (VRP), and compare it to its single-level (SL) counterpart. Multilevel refinement recursively coarsens to create a hierarchy of approximations to the problem and refines at each level. A SL heuristic, termed the combined node-exchange composite heuristic (CNCH), is developed first to solve instances of the VRP. A ML version (the ML-CNCH) is then created, using the construction and improvement heuristics of the CNCH at each level. Experimentation is used to find a suitable combination, which extends the global view of these heuristics. Results comparing both SL and ML are presented.