920 resultados para PROFILES
Resumo:
Multiple endocrine neoplasia type 2 is characterized by germline mutations in RET. For exon 10, comprehensive molecular and corresponding phenotypic data are scarce. The International RET Exon 10 Consortium, comprising 27 centers from 15 countries, analyzed patients with RET exon 10 mutations for clinical-risk profiles. Presentation, age-dependent penetrance, and stage at presentation of medullary thyroid carcinoma (MTC), pheochromocytoma, and hyperparathyroidism were studied. A total of 340 subjects from 103 families, age 4-86, were registered. There were 21 distinct single nucleotide germline mutations located in codons 609 (45 subjects), 611 (50), 618 (94), and 620 (151). MTC was present in 263 registrants, pheochromocytoma in 54, and hyperparathyroidism in 8 subjects. Of the patients with MTC, 53% were detected when asymptomatic, and among those with pheochromocytoma, 54%. Penetrance for MTC was 4% by age 10, 25% by 25, and 80% by 50. Codon-associated penetrance by age 50 ranged from 60% (codon 611) to 86% (620). More advanced stage and increasing risk of metastases correlated with mutation in codon position (609?620) near the juxtamembrane domain. Our data provide rigorous bases for timing of premorbid diagnosis and personalized treatment/prophylactic procedure decisions depending on specific RET exon 10 codons affected.
Resumo:
Water vapour, despite being a minor constituent in the Martian atmosphere with its precipitable amount of less than 70 pr. μm, attracts considerable attention in the scientific community because of its potential importance for past life on Mars. The partial pressure of water vapour is highly variable because of its seasonal condensation onto the polar caps and exchange with a subsurface reservoir. It is also known to drive photochemical processes: photolysis of water produces H, OH, HO2 and some other odd hydrogen compounds, which in turn destroy ozone. Consequently, the abundance of water vapour is anti-correlated with ozone abundance. The Herschel Space Observatory provides for the first time the possibility to retrieve vertical water profiles in the Martian atmosphere. Herschel will contribute to this topic with its guaranteed-time key project called "Water and related chemistry in the solar system". Observations of Mars by Heterodyne Instrument for the Far Infrared (HIFI) and Photodetector Array Camera and Spectrometer (PACS) onboard Herschel are planned in the frame of the programme. HIFI with its high spectral resolution enables accurate observations of vertically resolved H2O and temperature profiles in the Martian atmosphere. Unlike HIFI, PACS is not capable of resolving the line-shape of molecular lines. However, our present study of PACS observations for the Martian atmosphere shows that the vertical sensitivity of the PACS observations can be improved by using multiple-line observations with different line opacities. We have investigated the possibility of retrieving vertical profiles of temperature and molecular abundances of minor species including H2O in the Martian atmosphere using PACS. In this paper, we report that PACS is able to provide water vapour vertical profiles for the Martian atmosphere and we present the expected spectra for future PACS observations. We also show that the spectral resolution does not allow the retrieval of several studied minor species, such as H2O2, HCl, NO, SO2, etc.
Resumo:
The eukaryotic cell membrane possesses numerous complex functions, which are essential for life. At this, the composition and the structure of the lipid bilayer are of particular importance. Polyunsaturated fatty acids may modulate the physical properties of biological membranes via alteration of membrane lipid composition affecting numerous physiological processes, e.g. in the immune system. In this systematic study we present fatty acid and peptide profiles of cell membrane and membrane rafts of murine macrophages that have been supplemented with saturated fatty acids as well as PUFAs from the n-3, the n-6 and the n-9 family. Using fatty acid composition analysis and mass spectrometry-based peptidome profiling we found that PUFAs from both the n-3 and the n-6 family have an impact on lipid and protein composition of plasma membrane and membrane rafts in a similar manner. In addition, we found a relation between the number of bis-allyl-methylene positions of the PUFA added and the unsaturation index of plasma membrane as well as membrane rafts of supplemented cells. With regard to the proposed significance of lipid microdomains for disease development and treatment our study will help to achieve a targeted dietary modulation of immune cell lipid bilayers.
Resumo:
Mass spectrometry-based serum metabolic profiling is a promising tool to analyse complex cancer associated metabolic alterations, which may broaden our pathophysiological understanding of the disease and may function as a source of new cancer-associated biomarkers. Highly standardized serum samples of patients suffering from colon cancer (n = 59) and controls (n = 58) were collected at the University Hospital Leipzig. We based our investigations on amino acid screening profiles using electrospray tandem-mass spectrometry. Metabolic profiles were evaluated using the Analyst 1.4.2 software. General, comparative and equivalence statistics were performed by R 2.12.2. 11 out of 26 serum amino acid concentrations were significantly different between colorectal cancer patients and healthy controls. We found a model including CEA, glycine, and tyrosine as best discriminating and superior to CEA alone with an AUROC of 0.878 (95% CI 0.815-0.941). Our serum metabolic profiling in colon cancer revealed multiple significant disease-associated alterations in the amino acid profile with promising diagnostic power. Further large-scale studies are necessary to elucidate the potential of our model also to discriminate between cancer and potential differential diagnoses. In conclusion, serum glycine and tyrosine in combination with CEA are superior to CEA for the discrimination between colorectal cancer patients and controls.
Resumo:
OBJECTIVE:To determine whether low low-density lipoprotein cholesterol (LDL-C) but not high-density lipoprotein cholesterol (HDL-C) and triglyceride concentrations are associated with worse outcome in a large cohort of ischemic stroke patients treated with IV thrombolysis. METHODS:Observational multicenter post hoc analysis of prospectively collected data in stroke thrombolysis registries. Because of collinearity between total cholesterol (TC) and LDL-C, we used 2 different models with TC (model 1) and with LDL-C (model 2). RESULTS:Of the 2,485 consecutive patients, 1,847 (74%) had detailed lipid profiles available. Independent predictors of 3-month mortality were lower serum HDL-C (adjusted odds ratio [(adj)OR] 0.531, 95% confidence interval [CI] 0.321-0.877 in model 1; (adj)OR 0.570, 95% CI 0.348-0.933 in model 2), lower serum triglyceride levels ((adj)OR 0.549, 95% CI 0.341-0.883 in model 1; (adj)OR 0.560, 95% CI 0.353-0.888 in model 2), symptomatic ICH, and increasing NIH Stroke Scale score, age, C-reactive protein, and serum creatinine. TC, LDL-C, HDL-C, and triglycerides were not independently associated with symptomatic ICH. Increased HDL-C was associated with an excellent outcome (modified Rankin Scale score 0-1) in model 1 ((adj)OR 1.390, 95% CI 1.040-1.860). CONCLUSION:Lower HDL-C and triglycerides were independently associated with mortality. These findings were not due to an association of lipid concentrations with symptomatic ICH and may reflect differences in baseline comorbidities, nutritional state, or a protective effect of triglycerides and HDL-C on mortality following acute ischemic stroke.
Resumo:
The radiation dose rates at flight altitudes may be hazardously increased during solar cosmic ray events. Within the scope of this paper we investigate the total accumulated radiation doses, i.e. the contribution of galactic and solar cosmic rays, during the two extreme solar cosmic ray events on 29 September 1989 and on 20 January 2005 along selected flight profiles. In addition, the paper discusses the consequences of possible solar cosmic ray flux approximations on the results of the radiation dose computations.
Resumo:
Argillaceous formations generally act as aquitards because of their low hydraulic conductivities. This property, together with the large retention capacity of clays for cationic contaminants, has brought argillaceous formations into focus as potential host rocks for the geological disposal of radioactive and other waste. In several countries, programmes are under way to characterise the detailed transport properties of such formations at depth. In this context, the interpretation of profiles of natural tracers in pore waters across the formations can give valuable information about the large-scale and long-term transport behaviour of these formations. Here, tracer-profile data, obtained by various methods of pore-water extraction for nine sites in central Europe, are compiled. Data at each site comprise some or all of the conservative tracers: anions (Cl(-), Br(-)), water isotopes (delta(18)O, delta(2)H) and noble gases (mainly He). Based on a careful evaluation of the palaeo-hydrogeological evolution at each site, model scenarios are derived for initial and boundary pore-water compositions and an attempt is made to numerically reproduce the observed tracer distributions in a consistent way for all tracers and sites, using transport parameters derived from laboratory or in situ tests. The comprehensive results from this project have been reported in Mazurek et al. (2009). Here the results for three sites are presented in detail, but the conclusions are based on model interpretations of the entire data set. In essentially all cases, the shapes of the profiles can be explained by diffusion acting as the dominant transport process over periods of several thousands to several millions of years and at the length scales of the profiles. Transport by advection has a negligible influence on the observed profiles at most sites, as can be shown by estimating the maximum advection velocities that still give acceptable fits of the model with the data. The advantages and disadvantages of different conservative tracers are also assessed. The anion Cl(-) is well suited as a natural tracer in aquitards, because its concentration varies considerably in environmental waters. It can easily be measured, although the uncertainty regarding the fraction of the pore space that is accessible to anions in clays remains an issue. The stable water isotopes are also well suited, but they are more difficult to measure and their values generally exhibit a smaller relative range of variation. Chlorine isotopes (delta(37)Cl) and He are more difficult to interpret because initial and boundary conditions cannot easily be constrained by independent evidence. It is also shown that the existence of perturbing events such as the activation of aquifers due to uplift and erosion, leading to relatively sharp changes of boundary conditions, can be considered as a pre-requisite to obtain well-interpretable tracer signatures. On the other hand, gradual changes of boundary conditions are more difficult to parameterise and so may preclude a clear interpretation.