984 resultados para PIM-SM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study examines the role of interparticle cementation in the collapse behavior of two partly saturated (S-r = 4 to 12%) and very highly porous (initial void ratio = 1.5 to 2) laboratory-desiccated clayey silt specimens containing varying amounts (5 and 15% by dry weight of the respective specimens) of the cementitious iron oxides hematite and goethite, which are generally encountered in tropical residual soils. Kaolinite is the representative clay mineral of the soil matrix used for this research. Interparticle cementation by the crystalline iron oxides was generated in the laboratory by repeated (six times) wetting and drying of the iron-hydroxide-admixed clayey silt specimens under ambient conditions of temperature and humidity. Results showed that, for a given laboratory-desiccated clayey silt specimen (i.e., a specimen containing 5 or 15% of iron oxide on a dry weight basis), the amount of collapse (represented by Delta epsilon, the change in vertical strain upon wetting under constant pressure) increases with an increase in the experimental loading under which the specimen is inundated. The laboratory results also show that the desiccated specimen with a higher iron oxide content (containing 15% iron oxide by dry weight of the desiccated specimen) in spite of a lower dry unit weight (gamma(d) = 8.8 kN/m(3)) undergoes a lesser amount of collapse on soaking under a constant external stress (50 or 100 kPa) than the desiccated specimen with a lower iron oxide content (i.e., containing 5% iron oxide by dry weight of the desiccated specimen, gamma(d) = 10.4 KN/m(3)). Based on the X-ray diffraction results and the stress-strain relationships obtained from isotropically consolidated undrained triaxial tests, it is suggested that the laboratory-desiccated specimens are characterized by a metastable bonding provided by capillary suction and the crystalline iron oxides. On soaking under load owing to the loss of the metastable bonding, collapse of the laboratory-desiccated specimens occurs. Also, in the case of the laboratory-desiccated specimen with a higher iron oxide content, the presence of a stronger interparticle cementation (due to a greater abundance of crystalline iron oxides) and a higher initial moisture content are considered responsible for the specimen exhibiting a lower amount of collapse in comparison to that exhibited by the desiccated specimen with a lesser iron oxide content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of oxides LnBaCuCoO(5) (Ln = Pr, Nd, Sm, Dy, Gd, Ho and Er) have been synthesized by ceramic method. The oxides crystallize in a tetragonal structure, isostructural to YBaCuCoO5. All the oxides in the series are semiconducting. IR spectra of these oxides show distinct absorption bands at 630 cm(-1), 550 cm(-1) and 330 cm(-1) which are assigned to E, A(2) and A(1) modes respectively. Doping of holes in these oxides, by calcium substitution in Er1-xCaxBaCuCoO5-x (up to x similar or equal to 0.3) was done but, these oxides did not show metallic behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reported distress to an industrial structure from phosphate/sulfate contamination of kaolinitic foundation soil at an industrial location in Southern India prompted this laboratory study. The study examines the short-term effect of sodium sulfate/phosphate contamination on the swell/compression characteristics of a commercial kaolinite. Experimental results showed that the unsaturated contaminated kaolinite specimens exhibited slightly higher swell potentials and lower compressions than the unsaturated uncontaminated kaolinite specimens. It is suggested that the larger double layer promoted by the increased exchangeable sodium ion concentration is responsible for the slightly higher swell potentials and lower compressions of the unsaturated contaminated kaolinite specimens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inelastic light scattering studies on a single crystal of electron-doped Ca(Fe0.95Co0.05)(2)As-2 superconductor, covering the tetragonal-to-orthorhombic structural transition as well as the magnetic transition at T-SM similar to 140 K and the superconducting transition temperature T-c similar to 23 K, reveal evidence for superconductivity-induced phonon renormalization. In particular, the phonon mode near 260 cm(-1) shows hardening below T-c, signaling its coupling with the superconducting gap. All three Raman active phonon modes show anomalous temperature dependence between room temperature and T-c, i.e. the phonon frequency decreases with lowering temperature. Further, the frequency of one of the modes shows a sudden change in temperature dependence at TSM. Using first-principles density functional theory based calculations, we show that the low temperature phase (T-c < T < T-SM) exhibits short-ranged stripe antiferromagnetic ordering, and estimate the spin-phonon couplings that are responsible for these phonon anomalies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sintering, electrical conductivity and thermal expansion behaviour of combustion synthesised strontium substituted rare earth manganites with the general formula Ln(1-x)Sr(x)MnO(3) (Ln = Pr, Nd and Sm; x = 0, 0.16 and 0.25) have been investigated as solid oxide fuel cell cathode materials. The combustion derived rare earth manganites have surface area in the range of 13-40 m(2)/g. Strontium substitution increases the electrical conductivity values in all the rare earth manganites. With the decreasing ionic radii of rare earth ions, the conductivity value decreases. Among the rare earth manganites studied, (Pr/Nd)(0.75)Sr0.25MnO3 show high electrical conductivity ( > 100 S/cm). The thermal expansion coefficients of Pr0.75Sr0.25MnO3 and Nd0.75Sr0.25MnO3 were found to be 10.2 x 10(-6) and 10.7 x 10(-6) K-1 respectively, which is very close to that of the electrolyte (YSZ) used in solid oxide fuel cells. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemically deposited Cu-Ni black coatings on molybdenum substrate from ethylenediaminetetraacetic acid (EDTA) bath solution are shown to exhibit good optical properties (alpha = 0.94, epsilon = 0.09). The deposit is characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Cu is present in metallic and +2 oxidation states in the as-prepared Cu-Ni black coating, whereas Ni2+ as well as Ni3+ species are observed in the same coating. Cu and Ni are observed in their metallic state after 10 and 20 min sputtering. X-ray initiated Auger electron spectroscopy (XAES) of Cu and Ni also agrees well with XPS investigations. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Residually derived red soils occur in Bangalore District of Karnataka State, India. The porous and unsaturated nature of the red soils makes them susceptible to collapse on wetting under load. The present study analyses the collapse behaviour of an unsaturated bonded (undisturbed) red soil from Bangalore referenced to tests on samples in an unbonded (remoulded) state. A filter paper method was used to determine the matric suction of the bonded and unbonded specimens, and mercury intrusion porosimetry (MIP) was used to determine their soil structure. Analysis of the experimental results shows that bonding plays an important role in the collapse behaviour of the unsaturated residual soil. The results of the study also provide insight into the volume change behaviour of unsaturated bonded soils on wetting within and beyond the yield locus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compressive strength of epoxy with "free-inforcement" flyash without any prior separation is studied. It is observed that the increase in filler volume fraction beyond 10% brings about a reduction in the compressive strength. Increasing adhesion factor, determined relative to unfilled matrix, implied an alleviation in the interfacial adhesion due to dewetting, especially at the surfaces of larger particles and at higher filler concentrations. Such deductions were verified by examining the surface features of compression tested samples in Scanning Electron Microscope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review the current status of various aspects of biopolymer translocation through nanopores and the challenges and opportunities it offers. Much of the interest generated by nanopores arises from their potential application to third-generation cheap and fast genome sequencing. Although the ultimate goal of single-nucleotide identification has not yet been reached, great advances have been made both from a fundamental and an applied point of view, particularly in controlling the translocation time, fabricating various kinds of synthetic pores or genetically engineering protein nanopores with tailored properties, and in devising methods (used separately or in combination) aimed at discriminating nucleotides based either on ionic or transverse electron currents, optical readout signatures, or on the capabilities of the cellular machinery. Recently, exciting new applications have emerged, for the detection of specific proteins and toxins (stochastic biosensors), and for the study of protein folding pathways and binding constants of protein-protein and protein-DNA complexes. The combined use of nanopores and advanced micromanipulation techniques involving optical/magnetic tweezers with high spatial resolution offers unique opportunities for improving the basic understanding of the physical behavior of biomolecules in confined geometries, with implications for the control of crucial biological processes such as protein import and protein denaturation. We highlight the key works in these areas along with future prospects. Finally, we review theoretical and simulation studies aimed at improving fundamental understanding of the complex microscopic mechanisms involved in the translocation process. Such understanding is a pre-requisite to fruitful application of nanopore technology in high-throughput devices for molecular biomedical diagnostics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particulate composites based on polymer matrices generally contain fillers, especially those that are abundantly available and are cheaper. The inclusion of these, besides improving the properties, makes the system costwise viable, In the present study, fly ash was tried as a filler in epoxy. The filler particle surfaces were modified using three chemical surface treatment techniques in order to elicit the effect of adhesion at the interface on the mechanical properties of these composites. The compatibilizing of the filler with the use of a silane coupling agent yielded the best compression strength values. Scanning Electron Microscopy (SEM) has been used to characterize and supplement the mechanical test data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particulate reinforcements for polymers are selected with dual objective of improving composite properties and save on the total cost of the system. In the present study fly ash, an industrial waste with good properties is used as filler in epoxy and the compressive properties of such composites are studied. Particle surfaces are treated chemically using a silane-coupling agent to improve the compatibility with the matrix. The compressive properties of these are compared with those made of untreated fly ash particulates. Furthermore properties of fly ash composites with two different average particle sizes are first compared between themselves and then with those made using the as-received bimodal nature of particle size distribution. Microscopic observations of compression tested samples revealed a better adherence of the particles with the matrix in case of treated particles and regards the size effect the composites with lower average particle size showed improved strength at higher filler contents. Experimental values of strengths and modulii are compared with some of the theoretical models for composite properties. (C) 2002 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the immense growth in the number of available protein structures, fast and accurate structure comparison has been essential. We propose an efficient method for structure comparison, based on a structural alphabet. Protein Blocks (PBs) is a widely used structural alphabet with 16 pentapeptide conformations that can fairly approximate a complete protein chain. Thus a 3D structure can be translated into a 1D sequence of PBs. With a simple Needleman-Wunsch approach and a raw PB substitution matrix, PB-based structural alignments were better than many popular methods. iPBA web server presents an improved alignment approach using (i) specialized PB Substitution Matrices (SM) and (ii) anchor-based alignment methodology. With these developments, the quality of similar to 88% of alignments was improved. iPBA alignments were also better than DALI, MUSTANG and GANGSTA(+) in > 80% of the cases. The webserver is designed to for both pairwise comparisons and database searches. Outputs are given as sequence alignment and superposed 3D structures displayed using PyMol and Jmol. A local alignment option for detecting subs-structural similarity is also embedded. As a fast and efficient `sequence-based' structure comparison tool, we believe that it will be quite useful to the scientific community. iPBA can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/ipba/.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two fractions showing proteolytic enzymes have been obtained from the latex of Synadenium grantii Hook, 'f', using gel-filtration and anion-exchange chromatographic techniques. Both these proteases have the same molecular mass of 76+/-2 kDa each. They exhibit maximal activity at pH 7.0 and at a temperature of 60 degreesC. They display stability over a pH range from 5-10 and are also highly thermostable. Irreversible inhibition by PMSF indicates that they are serine proteases. In addition, histidine residues also appear to play an important role in catalysis as evidenced by inhibition with DEPC. They also exhibit similarity with respect to pH and temperature optima, kinetic properties and thermal stability. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe here a photoelectron spectroscopy beamline installed on Indus-1 storage ring. Initially we give a brief description of optical and mechanical layout of beam-line. The beamline optics was designed to cover energy range from 10 eV to 200 eV and it consists of a pre-focusing mirror, a toroidal grating monochromator and a post-focusing mirror. We then discuss indigenously developed ultra high vacuum compatible work station to carry out angle integrated photoemission experiments. The beamline has been successfully commissioned and photoemission measurements on a variety of standard samples are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isothermal sections of the phase diagrams for the systems Ln-Pd-O (Ln = lanthanide element) at 1223 K indicate the presence of two inter-oxide compounds Ln(4)PdO(7) and Ln(2)Pd(2)O(5) for Ln = La, Pr, Nd, Sm, three compounds Ln(4)PdO(7), Ln(2)PdO(4) and Ln(2)Pd(2)O(5) for Ln = Eu, Gd and only one compound of Ln(2)Pd(2)O(5) for Ln = Tb to Ho. The lattice parameters of the compounds Ln(4)PdO(7), Ln(2)PdO(4) and Ln(2)Pd(2)O(5) show systematic nonlinear variation with atomic number. The unit cell volumes decrease with increasing atomic number. The standard Gibbs energies, enthalpies and entropies of formation of the ternary oxides from their component binary oxides (Ln(2)O(3) and PdO) have been measured recently using an advanced version of the solid-state electrochemical cell. The Gibbs energies and enthalpies of formation become less negative with increasing atomic number of Ln. For all the three compounds, the variation in Gibbs energy and enthalpy of formation with atomic number is markedly non-linear. The decrease in stability with atomic number is most pronounced for Ln(2)Pd(2)O(5), followed by Ln(4)PdO(7) and Ln(2)PdO(4). This is probably related to the repulsion between Pd2+ ions on the opposite phases Of O-8 cubes in Ln(2)Pd(2)O(5), and the presence of Ln-filled O-8 cubes that share three faces with each other in Ln4PdO7. The values for entropy of formation of all the ternary oxides from their component binary oxides are relatively small. Although the entropies of formation show some scatter, the average value for Ln = La, Pr, Nd is more negative than the average value for the other lanthanide elements. From this difference, an average value for the structure transformation entropy of Ln(2)O(3) from C-type to A-type is estimated as 0.87 J.mol(-1).K-1. The standard Gibbs energies of formation of these ternary oxides from elements at 1223 K are presented as a function of lanthanide atomic number. By invoking the Neumann-Kopp rule for heat capacity, thermodynamic properties of the inter-oxide compounds at 298.15 K are estimated. (C) 2002 Elsevier Science Ltd. All rights reserved.