891 resultados para PANCREATIC-ISLETS
Resumo:
1. The mechanism of absorption of phosphatidylcholine was studied in rats by injecting into the intestine phosphatidylcholine specifically labelled either in the fatty acid or in the glycerol moiety or with 32P, when considerable amounts of 1-acyl-lysophosphatidylcholine were found in the intestinal lumen. 2-([14C]Acyl)phosphatidylcholine gave markedly more radioactive unesterified fatty acids in the lumen, compared with the 1-([14C]acyl) derivative. Some of the radioactivity from either the fatty acid or the glycerol moiety of the injected phosphatidylcholine appeared in the mucosal triacylglycerols. 2. Injection of 32P-labelled phosphatidylcholine or 32P-labelled lysophosphatidylcholine led to the appearance of radioactive glycerylphosphorylcholine, glycerophosphate and Pi in the mucosa. 3. Rat mucosa was found to contain a highly active glycerylphosphorylcholine diesterase. 4. It was concluded that the dietary phosphatidylcholine is hydrolysed in the intestinal lumen by the pancreatic phospholipase A to 1-acylglycerylphosphorylcholine, which on entering the mucosal cell is partly reacylated to phosphatidylcholine, and the rest is further hydrolysed to glycerylphosphorylcholine, glycerophosphate, glycerol and Pi. The fatty acids and glycerophosphate are then reassembled to give triacylglycerols via the Kennedy (1961) pathway.
Resumo:
The biodiversity of farmland ecosystems has decreased remarkably during the latter half of the 20th century, and this development is due to intensive farming with its various environmental effects. In the countries of the EU the Common Agricultural Policy (CAP) is the main determinant affecting farmland biodiversity, since the agricultural policy defines guidelines of agricultural practices. In addition to policies promoting intensive farming, CAP also includes national agri-environment schemes (AES), in which a part of subsidies paid to farmers is directed to acts that are presumed to promote environmental protection and biodiversity. In order to shape AES into relevant and powerful tools for biodiversity protection, detailed studies on the effects of agriculture on species and species assemblages are needed. In my thesis I investigated the importance of habitat heterogeneity and effects of different habitat and landscape characteristics on farmland bird abundance and diversity in typical cereal cultivation-dominated southern Finnish agricultural environments. The extensive data used were collected by territory mapping. My two main study species were the drastically declined ortolan bunting (Emberiza hortulana) and the phenomenally increased tree sparrow (Passer montanus); in addition I studied assemblages of 20 species breeding in open arable and edge/bush habitats. In light of my results I discuss whether the Finnish AES take into account the habitat needs of farmland birds, and I provide suggestions for improvement of the future AES. My results show that heterogeneity of both uncultivated and cultivated habitats increases abundance and species richness among farmland birds, but in this respect the amount and diversity of uncultivated habitats are essential. Ditches in particular are a keystone structure for farmland birds in boreal landscapes. Ditches lined by trees or bushes increased ortolan bunting abundance. Loss of that kind of ditches (and clearance of forest and bush patches), reduced breeding ortolan buntings, mainly by decreasing availability of song-posts that are important for the breeding groups of the species. Heterogeneity of uncultivated habitats, most importantly open ditches and the habitat patch richness, increased densities and species richnesses of species assemblages of open arable and edge/bush habitats. Human impact (winter-feeding, nest-boxes) affected favourably the tree sparrow s rapid range expansion in southern Finland, but any habitat types had no significant effects. At the moment the Finnish agri-environmental policy does not conserve farmland ditches as a habitat type. Instead, sub-surface drainage is financially promoted. This is a fatal mistake as far as farmland biodiversity is concerned. In addition to the maintenance of ditches, at least the following aspects should be included more than is done previously in the measures of the future AES: 1) promotion of diverse crop rotation (especially by promoting animal husbandry), 2) maintenance of tree and bush vegetation in islets and along ditches, 3) promotion of organic farming.
Resumo:
Different purified proteins were shown to give purple formazan bands corresponding to the protein stain following electrophoresis on polyacrylamide gels, in the presence of nitrobluetetrazolium (NBT) and phenazine methosulfate (PMS). Both PMS and NBT are needed for formazan production which has a favorable pH at 8.5. Sulfhydryl blockers in the incubation medium inhibited this color development to different extents. While proteins with free SH groups like bovine serum albumin, ovalbumin, and urease showed this pyridine nucleotide independent artifact, nonthiol proteins, viz., bovine pancreatic ribonuclease A, and riboflavin-binding protein from chicken egg white failed to do so. The nonenzymatic formazan formation observed with different proteins could also be shown in an in vitro assay system. It is clear that the “nothing dehydrogenase” phenomenon observed in several cases may be due to the thiol group-mediated artifactual staining of proteins.
Resumo:
Human pancreatic juice contains two major trypsinogen isoenzymes called trypsinogen-1 and -2, or cationic and anionic trypsinogen, respectively. Trypsinogen isoenzymes are also expressed in various normal and malignant tissues. We aimed at developing monoclonal antibodies (MAbs) and time-resolved immunofluorometric methods recognizing human trypsinogen-1 and -2, respectively. Using these MAbs and methods we purified, characterized and quantitated trypsinogen isoenzymes in serum samples, ovarian cyst fluids and conditioned cell culture media. In sera from healthy subjects and patients with extrapancreatic disease the concentration of trypsinogen-1 is higher than that of trypsinogen-2. However, in acute pancreatitis we found that the concentration of serum trypsinogen-2 is 50-fold higher than in controls, whereas the difference in trypsinogen-1 concentration is only 15-fold. This suggested that trypsinogen-2 could be used as a diagnostic marker for acute pancreatitis. In human ovarian cyst fluids tumor-associated trypsinogen-2 (TAT-2) is the predominant isoenzyme. Most notably, in mucinous cyst fluids the levels of TAT-2 were higher in borderline and malignant than in benign cases. The increased levels in association with malignancy suggested that TAT could be involved in ovarian tumor dissemination and breakage of tissue barriers. Serum samples from patients who had undergone pancreatoduodenectomy contained trypsinogen-2. Trypsinogen-1 was detected in only one of nine samples. These results suggested that the expression of trypsinogen is not restricted to the pancreas. Determination of the isoenzyme pattern by ion exchange chromatography revealed isoelectric variants of trypsinogen isoenzymes in serum samples. Intact trypsinogen isoenzymes and tryptic and chymotryptic trypsinogen peptides were purified and characterized by mass spectrometry, Western blot analysis and N-terminal sequencing. The results showed that pancreatic trypsinogen-1 and -2 are sulfated at tyrosine 154 (Tyr154), whereas TAT-2 from a colon carcinoma cell line is not. Tyr154 is located within the primary substrate binding pocket of trypsin, thus Tyr154 sulfation is likely to influence substrate binding. The previously known differences in charge, substrate specificity and inhibitor binding between pancreatic and tumor-associated trypsinogens are suggested to be caused by sulfation of Tyr154 in pancreatic trypsinogens.
Resumo:
Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent human endopeptidases that can degrade virtually all components of the extracellular matrix (ECM). They are classified into eight subgroups according to their structure and into six subgroups based on their substrate-specificity. MMPs have been implicated in inflammation, tissue destruction, cell migration, arthritis, vascular remodeling, angiogenesis, and tumor growth and invasion. MMPs are inhibited by their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs). Different MMPs function in the same tasks depending on the tissue or cancer subtype. I investigated the role of recently discovered MMPs, especially MMPs-19 and -26, in intestinal inflammation, in intestinal and cutaneous wound healing, and in intestinal cancer. Several MMPs and TIMPs were studied to determine their exact location at tissue level and to obtain information on possible functions of MMPs in such tissues and diseases as the healthy intestine, inflammatory bowel disease (IBD), neonatal necrotizing enterocolitis (NEC), pyoderma gangrenosum (PG), and colorectal as well as pancreatic cancers. In latent celiac disease (CD), I attempted to identify markers to predict later onset of CD in children and adolescents. The main methods used were immunohistochemistry, in situ hybridization, and Taqman RT-PCR. My results show that MMP-26 is important for re-epithelialization in intestinal and cutaneous wound healing. In colon and pancreatic cancers, MMP-26 seems to be a marker of invasive potential, although it is not itself expressed at the invasive front. MMP-21 is upregulated in pancreatic cancer and may be associated with tumor differentiation. MMPs-19 and -28 are associated with normal tissue turnover in the intestine, but they disappear in tumor progression as if they were protective markers . MMP-12 is an essential protease in intestinal inflammation and tissue destruction, as seen here in NEC and in previous CD studies. In patients with type 1 diabetes (T1D), MMPs-1, -3, and -12 were upregulated in the intestinal mucosa. Furthermore, MMP-7 was strongly elevated in NEC. In a model of aberrant wound repair, PG, MMPs-8, -9, and 10 and TNFα may promote ECM destruction, while absence of MMP-1 and MMP-26 from keratinocytes retards re-epithelialization. Based on my results, I suggest MMP-26 to be considered a putative marker for poor prognosis in pancreatic and colon cancer. However, since it functions differently in various tissues and tumor subtypes, this use cannot be generalized. Furthermore, MMP-26 is a beneficial marker for wound healing if expressed by migrating epithelial cells. MMP-12 expression in latent CD patients warrants research in a larger patient population to confirm its role as a specific marker for CD in pathologically indistinct cases. MMP-7 should be considered one of the most crucial proteases in NEC-associated tissue destruction; hence, specific inhibitors of this MMP are worth investigating. In PG, TNFα inhibitors are potential therapeutic agents, as shown already in clinical trials. In conclusion, studies of several MMPs in specific diseases and in healthy tissues are needed to elucidate their roles at the tissue level. MMPs and TIMPs are not exclusively destructive or reparative in tissues. They seem to function differently in different tissues. To identify selective MMP inhibitors, we must thoroughly understand the MMP profile (degradome) and their functions in various organs not to interfere with normal reparative functions during wound repair or beneficial host-response effects during cancer initiation and growth.
Resumo:
Acute pancreatitis (AP), a common cause of acute abdominal pain, is usually a mild, self-limited disease. However, some 20-30% of patients develop a severe disease manifested by pancreatic necrosis, abscesses or pseudocysts, and/or extrapancreatic complications, such as vital organ failure (OF). Patients with AP develop systemic inflammation, which is considered to play a role in the pathogenesis of multiple organ failure (MOF). OF mimics the condition seen in patients with sepsis, which is characterized by an overwhelming production of inflammatory mediators, activation of the complement system and systemic activation of coagulation, as well as the development of disseminated intravascular coagulation (DIC) syndrome. Vital OF is the major cause of mortality in AP, along with infectious complications. About half of the deaths occur within the first week of hospitalization and thus, early identification of patients likely to develop OF is important. The aim of the present study was to investigate inflammatory and coagulation disturbances in AP and to find inflammatory and coagulation markers for predicting severe AP, and development of OF and fatal outcome. This clinical study consists of four parts. All of patients studied had AP when admitted to Helsinki University Central Hospital. In the first study, 31 patients with severe AP were investigated. Their plasma levels of protein C (PC) and activated protein C (APC), and monocyte HLA-DR expression were studied during the treatment period in the intensive care unit; 13 of these patients developed OF. In the second study, the serum levels of complement regulator protein CD59 were studied in 39 patients during the first week of hospitalization; 12 of them developed OF. In the third study, 165 patients were investigated; their plasma levels of soluble form of the receptor for advanced glycation end products (sRAGE) and high mobility group box 1 (HMGB1) protein were studied during the first 12 days of hos-pitalization; 38 developed OF. In the fourth study, 33 patients were studied on admission to hospital for plasma levels of prothrombin fragment F1+2 and tissue factor pathway inhibitor (TFPI), and thrombin formation capacity by calibrated automated thrombogram (CAT); 9 of them developed OF. Our results showed significant PC deficiency and decreased APC generation in patients with severe AP. The PC pathway defects seemed to be associated with the development of OF. In patients who developed OF, the levels of serum CD59 and plasma sRAGE, but not of HMGB1, were significantly higher than in patients who recovered without OF. The high CD59 levels on admission to the hospital seemed to be predictive for severe AP and OF. The median of the highest sRAGE levels was significantly higher in non-survivors than in survivors. No significant difference between the patient groups was found in the F1+2 levels. The thrombograms of all patients were disturbed in their shape, and in 11 patients the exogenous tissue factor did not trigger thrombin generation at all ( flat curve ). All of the patients that died displayed a flat curve. Free TFPI levels and free/total TFPI ratios were significantly higher in patients with a flat curve than in the others, and these levels were also significantly higher in non-survivors than in survivors. The flat curve in combination with free TFPI seemed to be predictive for a fatal outcome in AP.
Resumo:
The red genes of phage lambda specify two proteins, exonuclease and beta protein, which are essential for its general genetic recombination in recA- cells. These proteins seem to occur in vivo as an equimolar complex. In addition, beta protein forms a complex with another polypeptide, probably of phage origin, of Mr 70,000. The 70-kDa protein appears to be neither a precursor nor an aggregated form of either exonuclease or beta protein, since antibodies directed against the latter two proteins failed to react with 70-kDa protein on Ouchterlony double diffusion analysis. beta protein promotes Mg2+-dependent renaturation of complementary strands (Kmiec, E., and Holloman, W. K. (1981) J. Biol. Chem. 256, 12636-12639). To look for other pairing activities of beta protein, we developed methods of purification to free it of associated exonuclease. Exonuclease-free beta protein appeared unable to cause the pairing of a single strand with duplex DNA; however, like Escherichia coli single strand binding protein (SSB), beta protein stimulated formation of joint molecules by recA protein from linear duplex DNA and homologous circular single strands. Like recA protein, but unlike SSB, beta protein promoted the joining of the complementary single-stranded ends of phage lambda DNA. beta protein specifically protected single-stranded DNA from digestion by pancreatic DNase. The half-time for renaturation catalyzed by beta protein was independent of DNA concentration, unlike renaturation promoted by SSB and spontaneous renaturation, which are second order reactions. Thus, beta protein resembles recA protein in its ability to bring single-stranded DNA molecules together and resembles SSB in its ability to reduce secondary structure in single-stranded DNA.
Resumo:
Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder in which the cardinal symptoms arise from exocrine pancreatic insufficiency and bone marrow dysfunction. Previous studies have suggested increased risk of fatal complications among Finnish SDS infants. The genetic defect responsible for the disease was recently identified; the SBDS gene is located at chromosome 7q11 and encodes a protein that is involved in ribosome biosynthesis. The discovery of the SBDS gene has opened new insights into the pathogenesis of this multi-organ disease. This study aimed to assess phenotypic and genotypic features of Finnish patients with SDS. Seventeen Finnish patients with a clinical diagnosis of SDS were included in the study cohort. Extensive clinical, biochemical and imaging assessments were performed to elucidate the phenotypic features, and the findings were correlated with the SBDS genotype. Imaging studies included abdominal magnetic reso-nance imaging (MRI), brain MRI, cardiac echocardiography including tissue Doppler examination, and cardiac MRI. The skeletal phenotype was assessed by dual-energy X-ray absorptiometry and bone histomorphometry. Twelve patients had mutations in the SBDS gene. In MRI, a characteristic pattern of fat-replaced pancreas with occasional enhancement of scattered parenchymal foci and of pancreatic duct was noted in the SBDS mutation-positive patients while the mutation-negative patients did not have pancreatic fat accumulation. The patients with SBDS mutations had significantly reduced bone mineral density associated with low-energy peripheral fractures and vertebral compression fractures. Bone histomorphometry confirmed low-turnover osteoporosis. The patients with SBDS mutations had learning difficulties and smaller head size and brain volume than control subjects. Corpus callosum, cerebellar vermis, and pos-terior fossa structures were significantly smaller in SDS patients than in controls. Patients with SDS did not have evidence of clinical heart disease or myocardial fibrosis. However, subtle diastolic changes in the right ventricle and exercise-induced changes in the left ventricle contractile reserve were observed. This study expanded the phenotypic features of SDS to include primary low-turnover osteoporosis and structural alterations in the brain. Pancreatic MRI showed characteristic changes in the SBDS mutation-positive patients while these were absent in the mutation-negative patients, suggesting that MRI can be used to differentiate patients harbouring SBDS mutations from those without mutations. No evidence for clinical cardiac manifestations was found, but imaging studies revealed slightly altered myocardial function that may have clinical implications. These findings confirm the pleiotropic nature of SDS and underscore the importance of careful multidisciplinary follow-up of the affected individuals.
Resumo:
Congenital nephrotic syndrome of the Finnish type (NPHS1) is an autosomal recessive disease which is highly enriched in the Finnish population. It is caused by mutations in the NPHS1 gene encoding for nephrin, which is a major component of the glomerular filtration barrier in the kidney. Patients with NPHS1 have heavy proteinuria and nephrotic syndrome (NS) from birth and develop renal fibrosis in early childhood. Renal transplantation (TX) is the only curative treatment for NPHS1. These patients form the largest group of pediatric kidney transplant children in our country. The NPHS1 kidneys are removed in infancy and they serve as an excellent human material for studies of the pathophysiology of proteinuric kidney diseases. Sustained proteinuria is a major factor leading to end-stage renal failure and understanding this process is crucial for nephrology. In this study we investigated the glomerular and tubulointerstitial changes that occur in the NPHS1 kidneys during infancy as well as the expression of nephrin in non-renal tissues. We also studied the pathology and management of recurrent proteinuria in kidney grafts transplanted to NPHS1 children. Severe renal lesions evolved in patients with NPHS1 during the first months of life. Glomerular sclerosis developed through progressive mesangial sclerosis, and capillary obliteration was an early consequence of this process. Shrinkage of the glomerular tuft was common, whereas occlusion of tubular opening or protrusion of the glomerular tuft into subepithelial space or through the Bowman's capsule were not detected. Few inflammatory cells were detected in the mesangial area. The glomerular epithelial cells (podocytes) showed severe ultrastructural changes and hypertrophy. Podocyte proliferation and apoptosis were rare, but moderate amounts of podocytes were detached and ended up in the urine. The results showed that endocapillary lesions not extracapillary lesions, as generally believed were important for the sclerotic process in the NPHS1 glomeruli. In the tubulointerstitium, severe lesions developed in NPHS1 kidneys during infancy. Despite heavy proteinuria, tubular epithelial cells (TECs) did not show transition into myofibroblasts. The most abundant chemokines in NPHS1 tissue were neutrophil activating protein-2 (NAP-2), macrophage inhibiting factor (MIF), and monocyte chemoattractant protein-1 (MCP-1). Interstitial inflammation and fibrosis were first detected in the paraglomerular areas and the most abundant inflammatory cells were monocytes/macrophages. Arteries and arterioles showed intimal hypertrophy, but the pericapillary microvasculature remained quite normal. However, excessive oxidative stress was evident in NPHS1 kidneys. The results indicated that TECs were relatively resistant to the heavy tubular protein load. Nephrin was at first thought to be podocyte specific, but some studies especially in experimental animals have suggested that nephrin might also be expressed in non-renal tissues such as pancreas and central nervous system. The knowledge of nephrin biology is important for the evaluation of nephrin related diseases. In our study, no significant amounts of nephrin protein or mRNA were detected in non-renal tissues of man and pig as studied by immunohistochemistry and in situ hybridization. The phenotype analysis of NPHS1 children, who totally lack nephrin, revealed no marked impairment in the neurological, testicular, or pancreatic function speaking against the idea that nephrin would play an important functional role outside the kidney. The NPHS1 kidneys do not express nephrin and antibodies against this major glomerular filter protein have been observed in NPHS1 children after renal TX most likely as an immune reaction against a novel antigen. These antibodies have been associated with the development of recurrent NS in the kidney graft of NPHS1 patients. In our study, a third of the NPHS1 patients homozygous for Fin-Major mutation developed recurrent NS in the transplanted graft. Re-transplantations were performed to patients who lost their graft due to recurrent NS and heavy proteinuria immediately developed in all cases. While 73% of the patients had detectable serum anti-nephrin antibodies, the kidney biopsy findings were minimal. Introduction of plasma exchange (PE) to the treatment of recurrent nephroses increased the remission rate from 54% to 89%. If remission was achieved, recurrent NS did not significantly deteriorate the long term graft function. In conclusion, the results show that the lack of nephrin in podocyte slit diaphragm in NPHS1 kidneys induces progressive mesangial expansion and glomerular capillary obliteration and inflicts interstitial fibrosis, inflammation, and oxidative stress with surprisingly little involvement of the TECs in this process. Nephrin appears to have no clinical significance outside the kidney. Development of antibodies against nephrin seems to be a major cause of recurrent NS in kidney grafts of NPHS1 patients and combined use of PE and cyclophosphamide markedly improved remission rates.
Resumo:
Suurin ongelma syöpätautien lääkehoidossa on sen aiheuttamat toksiset sivuvaikutukset. Tyypillisesti vain noin 1 % elimistöön annostellusta lääkeaineesta saavuttaa hoitoa tarvitsevat syöpäsolut, loppuosa lääkeaineesta jää vahingoittamaan elimistön terveitä soluja. Toksiset sivuvaikutukset rajoittavat lääkehoidon annoksen nostamista elimistössä riittävälle pitoisuudelle, mikä johtaa usein sairauden ennenaikaiseen pahenemiseen ja mahdollisen lääkeaineresistenssin kehittymiseen. Liposomien välittämä lääkeaineen kohdentaminen voidaan jakaa kahteen eri menetelmään: passiiviseen ja aktiiviseen kohdentamiseen. Liposomien passiivisen kohdentamisen tarkoituksena on lisätä sytotoksisen lääkeaineen paikallistumista pelkästään kasvainkudokseen. Passiivinen kohdentaminen perustuu liposomien kulkeutumiseen verenkierron mukana, jolloin liposomit kerääntyvät epänormaalisti muodostuneeseen kasvainkudokseen. Liposomien aktiivisella kohdentamisella pyritään parantamaan passiivisesti kohdentuvien liposomien terapeuttista tehokkuutta kohdentamalla lääkeaineen vaikutus pelkästään syöpäsoluihin. Aktiivisessa kohdennuksessa liposomin pintaan kiinnitetään ligandi, joka spesifisesti tunnistaa kohdesolun. Tämän pro gradu -tutkielman kirjallisen osion tarkoituksena oli tutustua syöpäkudokseen kohdennettujen liposomien ominaisuuksiin tehokkaan soluunoton ja sytotoksisuuden saavuttamiseksi. Kokeellisessa osiossa tutkittiin kohdennettujen liposomien soluunottoa ja sytotoksista vaikutusta ihmisen munasarjasta eristetyillä adenokarsinoomasoluilla (SKOV-3). Liposomit kohdennettiin setuksimabi (C225, Erbitux®) vasta-aineella, jonka on todettu olevan tietyissä syöpätyypeissä (mm. keuhko- ja kolorektaalisyövissä, pään ja kaulan syövissä sekä rinta-, munuais-, eturauhas-, haima- ja munasarjasyövissä) yli-ilmentyneen epidermaalisen kasvutekijäreseptoriperheen HER1-proteiinin (ErbB-1, EGFR, epidermal growth factor receptor) spesifinen ja selektiivinen inhibiittori. Afrikan viherapinan munuaisista lähtöisin olevaa CV-1 solulinjaa käytettiin kontrollina kuvaamaan elimistön normaaleja soluja. Kohdennettujen liposomien soluunottoa tutkittiin soluunottokokeilla, joissa käytettiin kontrollina kohdentamattomia pegyloituja liposomeja. Setuksimabi-vasta-aineen spesifinen sitoutuminen EGF-reseptoriin todettiin kilpailutuskokeilla. Doksorubisiinia sisältävien immunoliposomien sytotoksisuutta selvitettiin Alamar Blue™ -elävyystestillä. Lisäksi immunoliposomien säilyvyyttä seurattiin mittaamalla liposomien keskimääräinen halkaisija noin kahden viikon välein. Setuksimabi-vasta-aineella kohdennettujen liposomien soluunotto oli huomattavasti suurentunut SKOV-3 syöpäsoluissa ja doksorubisiinia sisältävät kohdennetut liposomit aiheuttivat voimakkaamman sytotoksisen vaikutuksen kuin kohdentamattomat liposomit. Kohdennettujen doksorubisiiniliposomien sytotoksisuus tuli kuitenkin esille viiveellä, mikä viittaa lääkeaineen hitaaseen vapautumiseen liposomista. Suurentunutta soluunottoa ja sytotoksista vaikutusta ei havaittu CV-1 solulinjassa. Kohdennettujen liposomien sovellusmahdollisuudet lääketieteessä ja syövän hoidossa ovat merkittävät. Tällä hetkellä liposomien kliininen käyttö rajoittuu passiivisesti kohdennettuihin liposomeihin (Doxil® (Am.),Caelyx® (Eur.)). Lupaavista solukokeista huolimatta kohdennettujen liposomien terapeuttinen käyttö tulevaisuudessa näyttää haasteelliselta.
Resumo:
Young male rats maintained on a diet containing 1% cholesterol were sacrificed at the end of 1st, 2nd, 3rd, 5th, and 7th week. Acetone powders prepared from their intestinal mucosa and pancreas were tested for the synthetic and hydrolytic activities for Vitamin A and cholesterol esters. The esterifying activity of the mucosal enzymes for both Vitamin A and cholesterol increased progressively up to the end of the 5th week; the increase in esterification of cholesterol was more marked with respect to saturated fatty acids, as compared to the unsaturated ones. The pancreatic enzymes remained unaffected. It is suggested that one of the reasons for the accumulation of cholesterol esters in animal tissues may be the increased esterification of the sterol in the mucosa induced by dietary cholesterol.
Resumo:
32P labelled 5S RNA isolated fromMycobacterium smegmatis was digested withT 1 and pancreatic ribonucleases separately and fingerprinted by two dimensional high voltage electrophoresis on thin-layer DEAE-cellulose plates. The radioactive spots were sequenced and their molar yields were determined. The chain length of the 5S RNA was found to be 120. It showed resemblances to both prokaryotic and eukaryotic 5S RNAs.
Resumo:
The p53-family consists of three transcription factors, p53, p73 and p63. The family members have similar but also individual functions connected to cell cycle regulation, development and tumorigenesis. p53 and p73 act mainly as tumor suppressors. During DNA damage caused by anticancer drugs or irradiation, p53 and p73 levels are upregulated in cancer cells leading to apoptosis and cell cycle arrest. p53 is mutated in almost 50 per cent of the cancers, causing the cancer cells unable to undergo cell death. Instead, p73 is rarely mutated in cancer cells and because of that could be more viable target for anticancer therapy. The network surrounding the regulation of p73 is extensive and has several potential targets for cancer therapy. One of the most studied is Itch ligase, the negative regulator of p73 levels. Gene therapy directed towards knockdown of Itch ligase is a potential approach but in need for more in vivo proof. p73 has two isoforms, transactivating TA-forms and dominant-negative ΔN-forms. The specific regulation of these isoforms could also offer a possible way for more effective cancer treatment. The literature work includes information of structures, isoforms, functions and possible therapeutic targets of p73. Also the main therapeutic approaches to date are introduced. The experimental part is based on transfection and cytotoxicity studies done e.g. in pancreatic cancer cells (Mia PaCa-2, PANC1, BxPc-3 and HPAC). The aim of the experimental work was to optimize the conditions for effective transfection with DAB16 dendrimer nanoparticles and to measure the cytotoxicity of plain dendrimers and DAB16-pDNA complexes. Also the protein levels of p73 and Itch ligase were measured by Western blotting. The work was done as a part of a bigger project, which was aiming to down regulate Itch ligase (negative regulator of p73) by siRNA/shRNA. Tranfection results were promising, showing good transfection efficacy with DAB16 N/P30 in pancreatic cancer cells (except in BxPc-3). Pancreatic cancer cells showed recovery in 3 days after they were exposed to plain dendrimer solution or to DAB16-pDNA. Measurement of protein levels by Western blotting was not optimal and the proposals for the improvement regarding e.g. the gels and the extracted protein amounts have been done.
Resumo:
Nybildning av blodkärl från tidigare existerande kärl, angiogenes, är ett väsentligt skede vid tumörtillväxt. Denna process regleras av bland annat tillväxtfaktorer, var av den vaskulära endoteliala tillväxtfaktorn har en central roll. Hämning av angiogenes kan ske antingen extracellulärt med hjälp av humaniserade monoklonala antikroppar eller intracellulärt med hjälp av småmolekylära hämmaren. Sunitinib är en småmolekylär multikinashämmare och inhiberar flera tyrosinkinasreceptorer som påverkar tumörtillväxten och metastasutvecklingen vid cancer. Sunitinibs främsta indikationer är gastrointestinala stromacellstumörer, metastaserad njurcellscancer och neuroendokrina tumörer i bukspottskörteln. Behandling med tyrosinkinashämmare orsakar biverkningar som hypertension, kardiotoxicitet och njursvikt, vilka antas bero på de hämmande effekterna på mål som inte är väsentliga för anti-cancer-aktiviteten (”off-target” biverkningar). Bland annat AMP-aktiverat proteinkinas (AMPK), ett kinas som upprätthåller metabolisk homeostas i hjärtat, inhiberas av sunitinib och antas framkalla kardiovaskulära biverkningar. För att reducera ”off-target” biverkningar strävar man till att hitta alternativ som minskar de skadliga effekterna utan att den terapeutiska aktiviteten försvagas. Bland annat ett begränsat kaloriintag har uppvisat skyddande effekt på hjärtat via mekanismer sammankopplade till ökad resistens mot oxidativ stress, inflammation och mitokondriell dysfunktion, samt avtagande apoptos och autofagi. Detta sker delvis genom aktivering av enzymet Sirt1. Syftet med den här studien var att undersöka ifall kaloribegränsning skyddar mot kardiovaskulära och renala biverkningar inducerade av sunitinib hos råttor. Dessutom studerades vilka signalkedjor i cellen som medverkar. I studien användes 40 spontant hypertensiva råttor samt 10 normotensiva Wistar-Kyoto råttor. Försöksdjuren delades in i fem grupper beroende på behandling; I WKY kontroll, II SHR kontroll, III SHR + kaloribegränsning 70 %, IV SHR + sunitinib 3 mg/kg och V SHR + sunitinib 3 mg/kg + kaloribegränsning 70 %. Behandlingsperioden var åtta veckor. Blodtrycket mättes varje vecka med svansmanchett, urinutsöndringen undersöktes vecka 4 och vecka 8 med metabolismburar, ultraljudsundersökning av hjärtat utfördes sista veckan och blodkärlens respons till acetylkolin och natriumnitroprussid studerades i samband med avlivning. Proteinerna Sirt1 och AMPK analyserades i hjärtat med Western blotting samt förekomsten av makrofagmarkören ED1 i njurarna med immunhistokemi. Studien visade att sunitinibdosen 3 mg/kg är mycket väl tolererbar hos råttor eftersom sunitinib inte orsakade högre blodtryck, kraftigare hypertrofi eller mer omfattande njurskada jämfört med obehandlade SHR- grupper. Utgående från resultaten kan man också konstatera att kaloribegränsningen har positiva kardiovaskulära effekter.
Resumo:
Two fragments of pancreatic ribonuclease A, a truncated version of S-peptide (residues 1-15) and S-protein (residues 21-124), combine to give a catalytically active complex. We have substituted the wild-type residue at position 13, methionine (Met), with norleucine (Nle), where the only covalent change is the replacement of the sulfur atom with a methylene group. The thermodynamic parameters associated with the binding of this variant to S-protein, determined by titration calorimetry in the temperature range 10-40 degrees C, are reported and compared to values previously reported [Varadarajan, R., Connelly, P. R., Sturtevant, J. M., & Richards, F. M. (1992) Biochemistry 31, 1421-1426] for other position 13 analogs. The differences in the free energy and enthalpy of binding between the Met and Nle peptides are 0.6 and 7.9 kcal/mol at 25 degrees C, respectively. These differences are slightly larger than, but comparable to, the differences in the values for the Met/Ile and Met/Leu pairs. The structure of the mutant complex was determined to 1.85 Angstrom resolution and refined to an R-factor of 17.4% The structures of mutant and wild-type complexes are practically identical although the Nle side chain has a significantly higher average B-factor than the corresponding Met side chain. In contrast, the B-factors of the atoms of the cage of residues surrounding position 13 are all somewhat lower in the Nle variant than in the Met wild-type. Thus, the large differences in the binding enthalpy appear to reside entirely in the difference in chemical properties or dynamic behavior of the -S- and -CH2- groups and not in differences in the geometry of the side chains or the internal cavity surface. In addition, a novel method of obtaining protein stability data by means of isothermal titration calorimetry is introduced.