952 resultados para PACKET-SWITCHED NETWORK
Resumo:
In this paper, we present an improved load distribution strategy, for arbitrarily divisible processing loads, to minimize the processing time in a distributed linear network of communicating processors by an efficient utilization of their front-ends. Closed-form solutions are derived, with the processing load originating at the boundary and at the interior of the network, under some important conditions on the arrangement of processors and links in the network. Asymptotic analysis is carried out to explore the ultimate performance limits of such networks. Two important theorems are stated regarding the optimal load sequence and the optimal load origination point. Comparative study of this new strategy with an earlier strategy is also presented.
Resumo:
Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).
Resumo:
In this paper, a new high precision focused word sense disambiguation (WSD) approach is proposed, which not only attempts to identify the proper sense for a word but also provides the probabilistic evaluation for the identification confidence at the same time. A novel Instance Knowledge Network (IKN) is built to generate and maintain semantic knowledge at the word, type synonym set and instance levels. Related algorithms based on graph matching are developed to train IKN with probabilistic knowledge and to use IKN for probabilistic word sense disambiguation. Based on the Senseval-3 all-words task, we run extensive experiments to show the performance enhancements in different precision ranges and the rationality of probabilistic based automatic confidence evaluation of disambiguation. We combine our WSD algorithm with five best WSD algorithms in senseval-3 all words tasks. The results show that the combined algorithms all outperform the corresponding algorithms.
Resumo:
This research improved the measurement of public transport accessibility by capturing; travellers' behaviour; diversity of public transport mode; and the subjectivity of travellers' decision in the complex transport networks. The results of this research not only highlighted the importance of considering public transport network characteristics but also, revealed the impact of public transport diversity in the modelling of public transport accessibility. The research developed a hybrid discrete choice model with a nested logit structure to treat the correlation among the public transport mode choices and, a logit correction factor to rectify the correlation among the stop choices.
Resumo:
We analyse the fault-tolerant parameters and topological properties of a hierarchical network of hypercubes. We take a close look at the Extended Hypercube (EH) and the Hyperweave (HW) architectures and also compare them with other popular architectures. These two architectures have low diameter and constant degree of connectivity making it possible to expand these networks without affecting the existing configuration. A scheme for incrementally expanding this network is also presented. We also look at the performance of the ASCEND/DESCEND class of algorithms on these architectures.
Resumo:
Trimesic acid (TMA) and alcohols were recently shown to self-assemble into a stable, two-component linear pattern at the solution/highly oriented pyrolytic graphite (HOPG) interface. Away from equilibrium, the TMA/alcohol self-assembled molecular network (SAMN) can coexist with pure-TMA networks. Here, we report on some novel characteristics of these non-equilibrium TMA structures, investigated by scanning tunneling microscopy (STM). We observe that both the chicken-wire and flower-structure TMA phases can host 'guest' C60 molecules within their pores, whereas the TMA/alcohol SAMN does not offer any stable adsorption sites for the C60 molecules. The presence of the C60 molecules at the solution/solid interface was found to improve the STM image quality. We have taken advantage of the high-quality imaging conditions to observe unusual TMA bonding geometries at domain boundaries in the TMA/alcohol SAMN. Boundaries between aligned TMA/alcohol domains can give rise to doubled TMA dimer rows in two different configurations, as well as a tripled-TMA row. The boundaries created between non-aligned domains can create geometries that stabilize TMA bonding configurations not observed on surfaces without TMA/alcohol SAMNs, including small regions of the previously predicted 'super flower' TMA bonding geometry and a tertiary structure related to the known TMA phases. These structures are identified as part of a homologic class of TMA bonding motifs, and we explore some of the reasons for the stabilization of these phases in our multicomponent system.
Resumo:
Access to energy is a fundamental component of poverty abatement. People who live in homes without electricity are often dependent on dirty, time-consuming and disproportionately expensive solid fuel sources for heating and cooking. [1] In developing countries, the Human Development Index (HDI), which comprises measures of standard of living, longevity and educational attainment, increases rapidly with per capita electricity use. [2] For these reasons the United Nations has been making a concerted effort to promote global access to energy, first by naming 2012 the Year of Sustainable Energy for All, [3] and now by declaring 2014-2024 the Decade of Sustainable Energy for All. [4]
Resumo:
A major question in current network science is how to understand the relationship between structure and functioning of real networks. Here we present a comparative network analysis of 48 wasp and 36 human social networks. We have compared the centralisation and small world character of these interaction networks and have studied how these properties change over time. We compared the interaction networks of (1) two congeneric wasp species (Ropalidia marginata and Ropalidia cyathiformis), (2) the queen-right (with the queen) and queen-less (without the queen) networks of wasps, (3) the four network types obtained by combining (1) and (2) above, and (4) wasp networks with the social networks of children in 36 classrooms. We have found perfect (100%) centralisation in a queen-less wasp colony and nearly perfect centralisation in several other queen-less wasp colonies. Note that the perfectly centralised interaction network is quite unique in the literature of real-world networks. Differences between the interaction networks of the two wasp species are smaller than differences between the networks describing their different colony conditions. Also, the differences between different colony conditions are larger than the differences between wasp and children networks. For example, the structure of queen-right R. marginata colonies is more similar to children social networks than to that of their queen-less colonies. We conclude that network architecture depends more on the functioning of the particular community than on taxonomic differences (either between two wasp species or between wasps and humans).
Resumo:
In this report an artificial neural network (ANN) based automated emergency landing site selection system for unmanned aerial vehicle (UAV) and general aviation (GA) is described. The system aims increase safety of UAV operation by emulating pilot decision making in emergency landing scenarios using an ANN to select a safe landing site from available candidates. The strength of an ANN to model complex input relationships makes it a perfect system to handle the multicriteria decision making (MCDM) process of emergency landing site selection. The ANN operates by identifying the more favorable of two landing sites when provided with an input vector derived from both landing site's parameters, the aircraft's current state and wind measurements. The system consists of a feed forward ANN, a pre-processor class which produces ANN input vectors and a class in charge of creating a ranking of landing site candidates using the ANN. The system was successfully implemented in C++ using the FANN C++ library and ROS. Results obtained from ANN training and simulations using randomly generated landing sites by a site detection simulator data verify the feasibility of an ANN based automated emergency landing site selection system.
Resumo:
High end network security applications demand high speed operation and large rule set support. Packet classification is the core functionality that demands high throughput in such applications. This paper proposes a packet classification architecture to meet such high throughput. We have implemented a Firewall with this architecture in reconflgurable hardware. We propose an extension to Distributed Crossproducting of Field Labels (DCFL) technique to achieve scalable and high performance architecture. The implemented Firewall takes advantage of inherent structure and redundancy of rule set by using our DCFL Extended (DCFLE) algorithm. The use of DCFLE algorithm results in both speed and area improvement when it is implemented in hardware. Although we restrict ourselves to standard 5-tuple matching, the architecture supports additional fields. High throughput classification invariably uses Ternary Content Addressable Memory (TCAM) for prefix matching, though TCAM fares poorly in terms of area and power efficiency. Use of TCAM for port range matching is expensive, as the range to prefix conversion results in large number of prefixes leading to storage inefficiency. Extended TCAM (ETCAM) is fast and the most storage efficient solution for range matching. We present for the first time a reconfigurable hardware implementation of ETCAM. We have implemented our Firewall as an embedded system on Virtex-II Pro FPGA based platform, running Linux with the packet classification in hardware. The Firewall was tested in real time with 1 Gbps Ethernet link and 128 sample rules. The packet classification hardware uses a quarter of logic resources and slightly over one third of memory resources of XC2VP30 FPGA. It achieves a maximum classification throughput of 50 million packet/s corresponding to 16 Gbps link rate for the worst case packet size. The Firewall rule update involves only memory re-initialization in software without any hardware change.
Resumo:
Queensland University of Technology (QUT), School of Nursing (SoN), has offered a postgraduate Graduate Certificate in Emergency Nursing since 2003, for registered nurses practising in an emergency clinical area, who fulfil key entry criteria. Feedback from industry partners and students evidenced support for flexible and extended study pathways in emergency nursing. Therefore, in the context of a growing demand for emergency health services and the need for specialist qualified staff, it was timely to review and redevelop our emergency specialist nursing courses. The QUT postgraduate emergency nursing study area is supported by a course advisory group, whose aim is to provide input and focus development of current and future course planning. All members of the course advisory were invited to form an expert panel to review current emergency course documents. A half day “brainstorm session”, planning and development workshop was held to review the emergency courses to implement changes from 2009. Results from the expert panel planning day include: proposal for a new emergency specialty unit; incorporation of the College of Emergency Nurses (CENA) Standards for Emergency Nursing Specialist in clinical assessment; modification of the present core emergency unit; enhancing the focus of the two other units that emergency students undertake; and opening the emergency study area to the Graduate Diploma in Nursing (Emergency Nursing) and Master of Nursing (Emergency Nursing). The conclusion of the brainstorm session resulted in a clearer conceptualisation, of the study pathway for students. Overall, the expert panel group of enthusiastic emergency educators and clinicians provided viable options for extending the career progression opportunities for emergency nurses. In concluding, the opportunity for collaboration across university and clinical settings has resulted in the design of a course with exciting potential and strong clinical relevance.
Resumo:
In the education of physical sciences, the role of the laboratory cannot be overemphasised. It is the laboratory exercises which enable the student to assimilate the theoretical basis, verify the same through bench-top experiments, and internalize the subject discipline to acquire mastery of the same. However the resources essential to put together such an environment is substantial. As a result, the students go through a curriculum which is wanting in this respect. This paper presents a low cost alternative to impart such an experience to the student aimed at the subject of switched mode power conversion. The resources are based on an open source circuit simulator (Sequel) developed at IIT Mumbai, and inexpensive construction kits developed at IISc Bangalore. The Sequel programme developed by IIT Mumbai, is a circuit simulation program under linux operating system distributed free of charge. The construction kits developed at IISc Bangalore, is fully documented for anyone to assemble these circuit which minimal equipment such as soldering iron, multimeter, power supply etc. This paper puts together a simple forward dc to dc converter as a vehicle to introduce the programming under sequel to evaluate the transient performance and small signal dynamic model of the same. Bench tests on the assembled construction kit may be done by the student for study of operation, transient performance and closed loop stability margins etc.
Resumo:
Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.
Resumo:
This paper presents a power, latency and throughput trade-off study on NoCs by varying microarchitectural (e.g. pipelining) and circuit level (e.g. frequency and voltage) parameters. We change pipelining depth, operating frequency and supply voltage for 3 example NoCs - 16 node 2D Torus, Tree network and Reduced 2D Torus. We use an in-house NoC exploration framework capable of topology generation and comparison using parameterized models of Routers and links developed in SystemC. The framework utilizes interconnect power and delay models from a low-level modelling tool called Intacte[1]1. We find that increased pipelining can actually reduce latency. We also find that there exists an optimal degree of pipelining which is the most energy efficient in terms of minimizing energy-delay product.
Resumo:
High end network security applications demand high speed operation and large rule set support. Packet classification is the core functionality that demands high throughput in such applications. This paper proposes a packet classification architecture to meet such high throughput. We have Implemented a Firewall with this architecture in reconfigurable hardware. We propose an extension to Distributed Crossproducting of Field Labels (DCFL) technique to achieve scalable and high performance architecture. The implemented Firewall takes advantage of inherent structure and redundancy of rule set by using, our DCFL Extended (DCFLE) algorithm. The use of DCFLE algorithm results In both speed and area Improvement when It is Implemented in hardware. Although we restrict ourselves to standard 5-tuple matching, the architecture supports additional fields.High throughput classification Invariably uses Ternary Content Addressable Memory (TCAM) for prefix matching, though TCAM fares poorly In terms of area and power efficiency. Use of TCAM for port range matching is expensive, as the range to prefix conversion results in large number of prefixes leading to storage inefficiency. Extended TCAM (ETCAM) is fast and the most storage efficient solution for range matching. We present for the first time a reconfigurable hardware Implementation of ETCAM. We have implemented our Firewall as an embedded system on Virtex-II Pro FPGA based platform, running Linux with the packet classification in hardware. The Firewall was tested in real time with 1 Gbps Ethernet link and 128 sample rules. The packet classification hardware uses a quarter of logic resources and slightly over one third of memory resources of XC2VP30 FPGA. It achieves a maximum classification throughput of 50 million packet/s corresponding to 16 Gbps link rate for file worst case packet size. The Firewall rule update Involves only memory re-initialiization in software without any hardware change.