968 resultados para Oxide films
Resumo:
Single-phase multiferroic materials are of considerable interest for future memory and sensing applications. Thin films of Aurivillius phase Bi 7Ti3Fe3O21 and Bi6Ti 2.8Fe1.52Mn0.68O18 (possessing six and five perovskite units per half-cell, respectively) have been prepared by chemical solution deposition on c-plane sapphire. Superconducting quantum interference device magnetometry reveal Bi7Ti3Fe 3O21 to be antiferromagnetic (TN = 190 K) and weakly ferromagnetic below 35 K, however, Bi6Ti2.8Fe 1.52Mn0.68O18 gives a distinct room-temperature in-plane ferromagnetic signature (Ms = 0.74 emu/g, μ0Hc =7 mT). Microstructural analysis, coupled with the use of a statistical analysis of the data, allows us to conclude that ferromagnetism does not originate from second phase inclusions, with a confidence level of 99.5%. Piezoresponse force microscopy (PFM) demonstrates room-temperature ferroelectricity in both films, whereas PFM observations on Bi6Ti2.8Fe1.52Mn0.68O18 show Aurivillius grains undergo ferroelectric domain polarization switching induced by an applied magnetic field. Here, we show for the first time that Bi6Ti2.8Fe1.52Mn0.68O18 thin films are both ferroelectric and ferromagnetic and, demonstrate magnetic field-induced switching of ferroelectric polarization in individual Aurivillius phase grains at room temperature.
Resumo:
Atomic layer deposition (ALD) of highly conformal, silicon-based dielectric thin films has become necessary because of the continuing decrease in feature size in microelectronic devices. The ALD of oxides and nitrides is usually thought to be mechanistically similar, but plasma-enhanced ALD of silicon nitride is found to be problematic, while that of silicon oxide is straightforward. To find why, the ALD of silicon nitride and silicon oxide dielectric films was studied by applying ab initio methods to theoretical models for proposed surface reaction mechanisms. The thermodynamic energies for the elimination of functional groups from different silicon precursors reacting with simple model molecules were calculated using density functional theory (DFT), explaining the lower reactivity of precursors toward the deposition of silicon nitride relative to silicon oxide seen in experiments, but not explaining the trends between precursors. Using more realistic cluster models of amine and hydroxyl covered surfaces, the structures and energies were calculated of reaction pathways for chemisorption of different silicon precursors via functional group elimination, with more success. DFT calculations identified the initial physisorption step as crucial toward deposition and this step was thus used to predict the ALD reactivity of a range of amino-silane precursors, yielding good agreement with experiment. The retention of hydrogen within silicon nitride films but not in silicon oxide observed in FTIR spectra was accounted for by the theoretical calculations and helped verify the application of the model.
Resumo:
Nano-scale touch screen thin film have not been thoroughly investigated in terms of dynamic impact analysis under various strain rates. This research is focused on two different thin films, Zinc Oxide (ZnO) film and Indium Tin Oxide (ITO) film, deposited on Polyethylene Terephthalate (PET) substrate for the standard touch screen panels. Dynamic Mechanical Analysis (DMA) was performed on the ZnO film coated PET substrates. Nano-impact (fatigue) testing was performed on ITO film coated PET substrates. Other analysis includes hardness and the elastic modulus measurements, atomic force microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and the Scanning Electron Microscopy (SEM) of the film surface.
Ten delta of DMA is described as the ratio of loss modulus (viscous properties) and storage modulus (elastic properties) of the material and its peak against time identifies the glass transition temperature (Tg). Thus, in essence the Tg recognizes changes from glassy to rubber state of the material and for our sample ZnO film, Tg was found as 388.3 K. The DMA results also showed that the Ten delta curve for Tg increases monotonically in the viscoelastic state (before Tg) and decreases sharply in the rubber state (after Tg) until recrystallization of ZnO takes place. This led to an interpretation that enhanced ductility can be achieved by negating the strength of the material.
For the nano-impact testing using the ITO coated PET, the damage started with the crack initiation and propagation. The interpretation of the nano-impact results depended on the characteristics of the loading history. Under the nano-impact loading, the surface structure of ITO film suffered from several forms of failure damages that range from deformation to catastrophic failures. It is concluded that in such type of application, the films should have low residual stress to prevent deformation, good adhesive strength, durable and good resistance to wear.
Resumo:
In this work NiO/3mol% Y2O3-ZrO2 (3YSZ) and NiO/8mol% Y2O3-ZrO2 (8YSZ) hollow fibers were prepared by phase-inversion. The effect of different kinds of YSZ (3YSZ and 8YSZ) on the porosity, electrical conductivity, shrinkage and flexural strength of the hollow fibers were systematically evaluated. When compared with Ni-8YSZ the porosity and shrinkage of Ni-3YSZ hollow fibers increases while the electrical conductivity decreases, while at the same time also exhibiting enhanced flexural strength. Single cells with Ni-3YSZ and Ni-8YSZ hollow fibers as the supported anode were successfully fabricated showing maximum power densities of 0.53 and 0.67Wcm-2 at 800°C, respectively. Furthermore, in order to improve the cell performance, a Ni-8YSZ anode functional layer was added between the electrolyte and Ni-YSZ hollow fiber. Here enhanced peak power densities of 0.79 and 0.73Wcm-2 were achieved at 800°C for single cells with Ni-3YSZ and Ni-8YSZ hollow fibers, respectively.
Resumo:
A 10 mol%Sc2O3, 1 mol%CeO2 stabilized-ZrO2 (SSZ) powder was successfully prepared using the sol-gel method. Subsequent SSZ electrolyte pellets were prepared by tape casting technique and sintered at 1400 °C, 1450 °C, 1500 °C, 1550 °C and 1600 °C. These were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). SSZ showed a pure cubic phase after sintering, the grain size of SSZ increased with the increase of sintering temperature. The SSZ sintered at 1550 °C showed the highest ion conductivity. The maximum power densities of Ni-SSZ/SSZ/La0.8Sr0.2MnO3-δ (LSM)-SSZ single cells sintered at 1550 °C were 0.18, 0.36, 0.51 and 0.72 W cm-2 at 650, 700, 750 and 800 °C, respectively. The polarization resistance (Rp) of the single cell attained 0.201 Ω cm2 at 800 °C.
Resumo:
In recent years, nanoscience and nanotechnology has emerged as one of the most important and exciting frontier areas of research interest in almost all fields of science and technology. This technology provides the path of many breakthrough changes in the near future in many areas of advanced technological applications. Nanotechnology is an interdisciplinary area of research and development. The advent of nanotechnology in the modern times and the beginning of its systematic study can be thought of to have begun with a lecture by the famous physicist Richard Feynman. In 1960 he presented a visionary and prophetic lecture at the meeting of the American Physical Society entitled “there is plenty of room at the bottom” where he speculated on the possibility and potential of nanosized materials. Synthesis of nanomaterials and nanostructures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials are possible only when materials are made available with desired size, morphology, crystal structure and chemical composition. Cerium oxide (ceria) is one of the important functional materials with high mechanical strength, thermal stability, excellent optical properties, appreciable oxygen ion conductivity and oxygen storage capacity. Ceria finds a variety of applications in mechanical polishing of microelectronic devices, as catalysts for three-way automatic exhaust systems and as additives in ceramics and phosphors. The doped ceria usually has enhanced catalytic and electrical properties, which depend on a series of factors such as the particle size, the structural characteristics, morphology etc. Ceria based solid solutions have been widely identified as promising electrolytes for intermediate temperature solid oxide fuel cells (SOFC). The success of many promising device technologies depends on the suitable powder synthesis techniques. The challenge for introducing new nanopowder synthesis techniques is to preserve high material quality while attaining the desired composition. The method adopted should give reproducible powder properties, high yield and must be time and energy effective. The use of a variety of new materials in many technological applications has been realized through the use of thin films of these materials. Thus the development of any new material will have good application potential if it can be deposited in thin film form with the same properties. The advantageous properties of thin films include the possibility of tailoring the properties according to film thickness, small mass of the materials involved and high surface to volume ratio. The synthesis of polymer nanocomposites is an integral aspect of polymer nanotechnology. By inserting the nanometric inorganic compounds, the properties of polymers can be improved and this has a lot of applications depending upon the inorganic filler material present in the polymer.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The thesis aims to exploit properties of thin films for applications such as spintronics, UV detection and gas sensing. Nanoscale thin films devices have myriad advantages and compatibility with Si-based integrated circuits processes. Two distinct classes of material systems are investigated, namely ferromagnetic thin films and semiconductor oxides. To aid the designing of devices, the surface properties of the thin films were investigated by using electron and photon characterization techniques including Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), grazing incidence X-ray diffraction (GIXRD), and energy-dispersive X-ray spectroscopy (EDS). These are complemented by nanometer resolved local proximal probes such as atomic force microscopy (AFM), magnetic force microscopy (MFM), electric force microscopy (EFM), and scanning tunneling microscopy to elucidate the interplay between stoichiometry, morphology, chemical states, crystallization, magnetism, optical transparency, and electronic properties. Specifically, I studied the effect of annealing on the surface stoichiometry of the CoFeB/Cu system by in-situ AES and discovered that magnetic nanoparticles with controllable areal density can be produced. This is a good alternative for producing nanoparticles using a maskless process. Additionally, I studied the behavior of magnetic domain walls of the low coercivity alloy CoFeB patterned nanowires. MFM measurement with the in-plane magnetic field showed that, compared to their permalloy counterparts, CoFeB nanowires require a much smaller magnetization switching field , making them promising for low-power-consumption domain wall motion based devices. With oxides, I studied CuO nanoparticles on SnO2 based UV photodetectors (PDs), and discovered that they promote the responsivity by facilitating charge transfer with the formed nanoheterojunctions. I also demonstrated UV PDs with spectrally tunable photoresponse with the bandgap engineered ZnMgO. The bandgap of the alloyed ZnMgO thin films was tailored by varying the Mg contents and AES was demonstrated as a surface scientific approach to assess the alloying of ZnMgO. With gas sensors, I discovered the rf-sputtered anatase-TiO2 thin films for a selective and sensitive NO2 detection at room temperature, under UV illumination. The implementation of UV enhances the responsivity, response and recovery rate of the TiO2 sensor towards NO2 significantly. Evident from the high resolution XPS and AFM studies, the surface contamination and morphology of the thin films degrade the gas sensing response. I also demonstrated that surface additive metal nanoparticles on thin films can improve the response and the selectivity of oxide based sensors. I employed nanometer-scale scanning probe microscopy to study a novel gas senor scheme consisting of gallium nitride (GaN) nanowires with functionalizing oxides layer. The results suggested that AFM together with EFM is capable of discriminating low-conductive materials at the nanoscale, providing a nondestructive method to quantitatively relate sensing response to the surface morphology.
Resumo:
Incorporation of carbon nanostructures in metals is desirable to combine the strongly bonded electrons in the metal and the free electrons in carbon nanostructures that give rise to high ampacity and high conductivity, respectively. Carbon in copper has the potential to impact industries such as: building construction, power generation and transmission, and microelectronics. This thesis focuses on the structure and properties of bulk and thin films of a new material, Cu covetic, that contains carbon in concentrations up to 16 at.%. X-ray photoelectron spectroscopy (XPS) shows C 1s peak with both sp2 and sp3 bonded C measuring up to 3.5 wt.% (16 at.%). High resolution transmission electron microscopy and electron diffraction of bulk covetic samples show a modulated structure of ≈ 1.6 nm along several crystallographic directions in regions that have high C content suggesting that the carbon incorporates into the copper lattice forming a network. Electron energy loss spectra (EELS) from covetics reveal that the level of graphitization from the source material, activated carbon, is maintained in the covetic structure. Bulk Cu covetics have a slight increase in the lattice constant, as well as <111> texturing, or possibly a different structure, compared to pure Cu. Density functional theory calculations predict bonding between C and Cu at the edges and defects of graphene sheets. The electrical resistivity of bulk covetics first increases and then decreases with increasing C content. Cu covetic films were deposited using e-beam and pulsed laser deposition (PLD) at different temperatures. No copper oxide or any allotropes of carbon are present in the films. The e-beam films show enhanced electrical and optical properties when compared to pure Cu films of the same thickness even though no carbon was detected by XPS or EELS. They also have slightly higher ampacity than Cu metal films. EELS analysis of the C-K-edge in the PLD films indicate that graphitic carbon is transferred from the bulk into the films with uniform carbon distribution. PLD films exhibit flatter and higher transmittance curves and sheet resistance two orders of magnitude lower than e-beam films leading to a high figure of merit as transparent conductors.
Resumo:
In the first half of this thesis, a new robotic instrument called a scanning impedance probe is presented that can acquire electrochemical impedance spectra in automated fashion from hundreds of thin film microelectrodes with systematically varied properties. Results from this instrument are presented for three catalyst compositions that are commonly considered for use in state-of-the-art solid oxide fuel cell cathodes. For (La0.8Sr0.2)0.95MnO3+δ (LSM), the impedance spectra are well fit by a through-the-film reaction pathway. Transport rates are extracted, and the surface activity towards oxygen reduction is found to be correlated with the number of exposed grain boundary sites, suggesting that grain boundaries are more surface-active than grains. For La0.5Sr0.5CoO3-δ (LSC), the surface activity degrades ~50x initially and then stabilizes at a comparable activity to that of previously measured Ba0.5Sr0.5Co0.8Fe0.2O3-δ films. For Sr0.06Nb0.06Bi1.87O3 (SNB), an example of a doped bismuth oxide, the activity of the metal-SNB boundary is measured.
In the second half of this thesis, SrCo0.9Nb0.1O3-δ is selected as a case study of perovskites containing Sr and Co, which are the most active oxygen reduction catalysts known. Several bulk properties are measured, and synchrotron data are presented that provide strong evidence of substantial cobalt-oxygen covalency at high temperatures. This covalent bonding may be the underlying source of the high surface activity.
Resumo:
A 3D mesoporous TiO2 material with well-developed mesostructure is prepared in the form of a binder-free thin (100 nm) film and studied as potential candidate for the negative electrode in lithium microbatteries. By appropriate thermal treatments, the selected crystal structure (anatase, rutile, or amorphous), and micro-/mesostructure of the materials was obtained. The effects of voltage window and prelithiation treatment improved first cycle reversibility up to 86% and capacity retention of 90% over 100 cycles. After a prolonged intercalation of lithium ions in ordered mesoporous TiO2 appeared small particles assigned to Li2Ti2O4 with cubic structure as observed from ex-situ TEM micrographs. This study highlights the flexibility of the potential window to which the electrode can operate. Maximum capacity values over 100 cycles of 470 μA h cm−2 μm−1 and 177 μA h cm−2 μm−1 are obtained for voltage ranges of 0.1–2.6 V and 1.0–2.6 V, respectively. The observed values are between 6 and 2 times higher than those obtained for films with 600 nm (80 μA h cm−2 μm−1) and 900 nm (92 μA h cm−2 μm−1) lengths. This indicates that 100 nm thin TiO2 films with high accessibility show finite-length type diffusion which is interesting for this particular application.
Resumo:
Transparent thin films can now be site-selectively patterned and positioned on surface using mask-defined electrodeposition of one oxide and overcoating with a different solution-processed oxide, followed by thermal annealing. Annealing allows an interdiffusion process to create a new oxide that is entirely transparent. A primary electrodeposited oxide can be patterned and the secondary oxide coated over the entire substrate to form high color contrast coplanar thin film tertiary oxide. The authors also detail the phase formation and chemical state of the oxide and how the nature of the electrodeposited layer and the overlayer influence the optical clearing of the patterned oxide film.
Resumo:
Manganese oxide is a promising active material for supercapacitors (SCs) with pseudocapacitance due to its high capacitance and its environmentally friendly character. This paper deals with the preparation of electrodes for supercapacitors consisting of manganese oxide supported onto graphite by electrophoretic deposition. Manganese oxide powders were characterized and dispersed in water by controlling the colloidal and rheological behavior in order to obtain stable suspensions. Optimized manganese oxide suspensions were deposited onto graphite electrodes by electrophoretic deposition. The deposited mass per unit area in the electrodes was optimized by controlling the applied current density and the deposition time. It has been demonstrated that the introduction of a binder helped to improve the adherence to graphite; otherwise the deposit thickness obtained by EPD is limited and no films can be obtained by simply dipping. These conditions allowed us to obtain more homogeneous deposits with higher specific energy than without binder.