977 resultados para Organ pieces.
Resumo:
John Pierce kept this journal while he was a student at Harvard College. It consists of manuscript musical scores with annotations indicating the occasions at which the music was performed. These occasions included commencements, public exhibitions and Dudleian lectures. A note indicates that one anthem was prepared by Samuel Holyoke at Pierce's request, to be performed at Pierce's class commencement exercises, held on July 13, 1793. Several annotations were made in May 1794, the year following Pierce's graduation. There is a table of contents on the last page.
Resumo:
Written mostly in a copperplate hand in black ink, and illustrated with watercolor drawings.
Resumo:
Introduction: Mechanical stress is often associated to interverterbal disc (IVD) degeneration and the effect of mechanical loading on IVD has been studied and reviewed.1,2 Previously, expression of heat shock proteins, HSP70 and HSP27 has been found in pathological discs.3 However, there is no direct evidence on whether IVD cells respond to the mechanical loading by expression of HSPs. The objective of this study is to investigate the stress response of IVD cells during compressive loading in an organ culture. Materials and Methods: Fresh adult bovine caudal discs were cultured with compressive loading applied at physiological range. Effect of loading type (static and dynamic) and repeated loading (2 hours per day for 2 days) were studied. Nucleus pulposus (NP) and annulus fibrosus (AF) of the IVD were retrieved at different time points: right after loading and right after resting. Positive control discs were heat shocked (43°C). Cell activity was assessed and expression of stress response genes (HSP70 and HSF1) and matrix remodeling genes (ACAN, COL2, COL1, ADAMTS4, MMP3 and MMP13) were studied. Results: Cell activity was maintained in all groups. Both NP and AF expressed high level of HSP70 in heat shock groups, confirming their expression in response to stress. In NP, expression of HSP70 was up-regulated after static loading and dynamic loading with higher fold change was observed after static loading. During repeated loading, HSP70 appeared to be upregulated right after loading and decreased after resting. Such trend was not observed in AF and HSF1 levels. Expressions of matrix remodeling genes did not change significantly with loading except ADAMTS4 decreased in AF during static loading. Conclusion: This study demonstrated that NP cells upregulate expression of HSP70 in response to loading induced stress without changing cell activity and matrix remodeling significantly. Acknowledgments: This project was funded by AO Spine (AOSPN) (grant number: SRN_2011_14) and a fellowship exchange award by AO Spine Scientific Research Network (SRN).
Resumo:
BACKGROUND Nocardiosis is a rare, life-threatening opportunistic infection, affecting 0.04% to 3.5% of patients after solid organ transplantation (SOT). The aim of this study was to identify risk factors for Nocardia infection after SOT and to describe the presentation of nocardiosis in these patients. METHODS We performed a retrospective case-control study of adult patients diagnosed with nocardiosis after SOT between 2000 and 2014 in 36 European (France, Belgium, Switzerland, Netherlands, Spain) centers. Two control subjects per case were matched by institution, transplant date and transplanted organ. A multivariable analysis was performed using conditional logistic regression to identify risk factors for nocardiosis. RESULTS One hundred and seventeen cases of nocardiosis and 234 control patients were included. Nocardiosis occurred at a median of 17.5 [range 2-244] months after transplantation. In multivariable analysis, high calcineurin inhibitor trough levels in the month before diagnosis (OR=6.11 [2.58-14.51]), use of tacrolimus (OR=2.65 [1.17-6.00]) and corticosteroid dose (OR=1.12 [1.03-1.22]) at the time of diagnosis, patient age (OR=1.04 [1.02-1.07]) and length of stay in intensive care unit after SOT (OR=1.04 [1.00-1.09]) were independently associated with development of nocardiosis; low-dose cotrimoxazole prophylaxis was not found to prevent nocardiosis. Nocardia farcinica was more frequently associated with brain, skin and subcutaneous tissue infections than were other Nocardia species. Among the 30 cases with central nervous system nocardiosis, 13 (43.3%) had no neurological symptoms. CONCLUSIONS We identified five risk factors for nocardiosis after SOT. Low-dose cotrimoxazole was not found to prevent Nocardia infection. These findings may help improve management of transplant recipients.
Resumo:
Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. The common occurrence of these structures in slow and ultra-slow spread oceanic crust suggests that they accommodate a significant component of plate divergence. However, the subsurface geometry of detachment faults in oceanic core complexes remains unclear. Competing models involve either: (a) displacement on planar, low-angle faults with little tectonic rotation; or (b) progressive shallowing by rotation of initially steeply dipping faults as a result of flexural unloading (the "rolling-hinge" model). We address this debate using palaeomagnetic remanences as markers for tectonic rotation within a unique 1.4 km long footwall section of gabbroic rocks recovered by Integrated Ocean Drilling Program (IODP) sampling at Atlantis Massif oceanic core complex on the Mid-Atlantic Ridge (MAR). These rocks contain a complex record of multipolarity magnetizations that are unrelated to alteration and igneous stratigraphy in the sampled section and are inferred to result from progressive cooling of the footwall section over geomagnetic polarity chrons C1r.2r, C1r.1n (Jaramillo) and C1r.1r. For the first time we have independently reoriented drill-core samples of lower crustal gabbros, that were initially azimuthally unconstrained, to a true geographic reference frame by correlating structures in individual core pieces with those identified from oriented imagery of the borehole wall. This allows reorientation of the palaeomagnetic data, placing far more rigorous constraints on the tectonic history than those possible using only palaeomagnetic inclination data. Analysis of the reoriented high temperature reversed component of magnetization indicates a 46° ± 6° anticlockwise rotation of the footwall around a MAR-parallel horizontal axis trending 011° ± 6°. Reoriented lower temperature components of normal and reversed polarity suggest that much of this rotation occurred after the end of the Jaramillo chron (0.99 Ma). The data provide unequivocal confirmation of the key prediction of flexural, rolling-hinge models for oceanic core complexes, whereby oceanic detachment faults initiate at higher dips and rotate to their present day low-angle geometries as displacement increases.
Resumo:
Mode of access: Internet.