931 resultados para Optimal active power flow
Resumo:
Power system planning, control and operation require an adequate use of existing resources as to increase system efficiency. The use of optimal solutions in power systems allows huge savings stressing the need of adequate optimization and control methods. These must be able to solve the envisaged optimization problems in time scales compatible with operational requirements. Power systems are complex, uncertain and changing environments that make the use of traditional optimization methodologies impracticable in most real situations. Computational intelligence methods present good characteristics to address this kind of problems and have already proved to be efficient for very diverse power system optimization problems. Evolutionary computation, fuzzy systems, swarm intelligence, artificial immune systems, neural networks, and hybrid approaches are presently seen as the most adequate methodologies to address several planning, control and operation problems in power systems. Future power systems, with intensive use of distributed generation and electricity market liberalization increase power systems complexity and bring huge challenges to the forefront of the power industry. Decentralized intelligence and decision making requires more effective optimization and control techniques techniques so that the involved players can make the most adequate use of existing resources in the new context. The application of computational intelligence methods to deal with several problems of future power systems is presented in this chapter. Four different applications are presented to illustrate the promises of computational intelligence, and illustrate their potentials.
Resumo:
The development of renewable energy sources and Distributed Generation (DG) of electricity is of main importance in the way towards a sustainable development. However, the management, in large scale, of these technologies is complicated because of the intermittency of primary resources (wind, sunshine, etc.) and small scale of some plants. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. VPPs can ensure a secure, environmentally friendly generation and optimal management of heat, electricity and cold as well as optimal operation and maintenance of electrical equipment, including the sale of electricity in the energy market. For attaining these goals, there are important issues to deal with, such as reserve management strategies, strategies for bids formulation, the producers’ remuneration, and the producers’ characterization for coalition formation. This chapter presents the most important concepts related with renewable-based generation integration in electricity markets, using VPP paradigm. The presented case studies make use of two main computer applications:ViProd and MASCEM. ViProd simulates VPP operation, including the management of plants in operation. MASCEM is a multi-agent based electricity market simulator that supports the inclusion of VPPs in the players set.
Resumo:
In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.
Resumo:
The management of energy resources for islanded operation is of crucial importance for the successful use of renewable energy sources. A Virtual Power Producer (VPP) can optimally operate the resources taking into account the maintenance, operation and load control considering all the involved cost. This paper presents the methodology approach to formulate and solve the problem of determining the optimal resource allocation applied to a real case study in Budapest Tech’s. The problem is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The problem has also been solved by Evolutionary Particle Swarm Optimization (EPSO). The obtained results are presented and compared.
Resumo:
This paper studies Optimal Intelligent Supervisory Control System (OISCS) model for the design of control systems which can work in the presence of cyber-physical elements with privacy protection. The development of such architecture has the possibility of providing new ways of integrated control into systems where large amounts of fast computation are not easily available, either due to limitations on power, physical size or choice of computing elements.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
Wireless local-area networks (WLANs) have been deployed as office and home communications infrastructures worldwide. The diversification of the standards, such as IEEE 802.11 series demands the design of RF front-ends. Low power consumption is one of the most important design concerns in the application of those technologies. To maintain competitive hardware costs, CMOS has been used since it is the best solution for low cost and high integration processing, allowing analog circuits to be mixed with digital ones. In the receiver chain, the low noise amplifier (LNA) is one of the most critical blocks in a transceiver design. The sensitivity is mainly determined by the LNA noise figure and gain. It interfaces with the pre-select filter and the mixer. Furthermore, since it is the first gain stage, care must be taken to provide accurate input match, low-noise figure, good linearity and a sufficient gain over a wide band of operation. Several CMOS LNAs have been reported during the last decade, showing that the most research has been done at 802.11/b and GSM standards (900-2400MHz spectrum) and more recently at 802.11/a (5GHz band). One of the more significant disadvantages of 802.11/b is that the frequency band is crowded and subject to interference from other technologies, as is 2.4GHz cordless phones and Bluetooth. As the demand for radio-frequency integrated circuits, operating at higher frequency bands, increases, the IEEE 802.11/a standard becomes a very attractive option to wireless communication system developers. This paper presents the design and implementation of a low power, low noise amplifier aimed at IEEE 802.11a for WLAN applications. It was designed to be integrated with an active balun and mixer, representing the first step toward a fully integrated monolithic WLAN receiver. All the required circuits are integrated at the same die and are powered by 1.8V supply source. Preliminary experimental results (S-parameters) are shown and promise excellent results. The LNA circuit design details are illustrated in Section 2. Spectre simulation results focused at gain, noise figure (NF) and input/output matching are presented in Section 3. Finally, conclusions and comparison with other recently reported LNAs are made in Section 4, followed by future work.
Resumo:
A simple, rapid, and precise amperometric method for quantification of N-methylcarbamate pesticides in water samples and phytopharmaceuticals is presented. Carbofuran and fenobucarb are the target analytes. The method is developed in flow conditions providing the anodic oxidation of phenolic-based compounds formed after alkaline hydrolysis. Optimization of instrumental and chemical variables is presented. Under the optimal conditions, the amperometric signal is linear for carbofuran and fenobucarb concentrations over the range of 1.0*10-7 to 1.0*10-5 molL-1, with a detection limit of about 2 ngmL-1. The amperometric method is successfully applied to the analysis of spiked environmental waters and commercial formulations. The proposed method allows 90 samples to be analysed per hour, using 500 mL of sample, and producing wastewaters of low toxicity. The proposed method permits determinations at the mgL 1 level and offers advantages of simplicity, accuracy, precision, and applicability to coloured and turbid samples, and automation feasibility.
Resumo:
Few analytical methods are currently available for determination of apomorphine, the active substance of a new oral formulation used in the treatment of erectile dysfunction. In this way a flow injection electrochemical method (FIA-EC) was developed for its quantification and applied to pharmaceutical dosage forms. Based in previous findings regarding the stability of apomorphine in borate buffer and after optimization of several analytical parameters a single channel flow injection manifold was set up that enables the determination of this drug over the concentration range of 3 to 16 µmol L-1 with a detection limit of 0.5 µmol L-1 at a sampling rateof 90 h-1. The simplicity and rapidity of the FIA-EC method used, its reproducibility and sensitivity make it suitable for quality control of pharmaceutical preparations of apomorphine intended for clinical use and research.
Resumo:
The electrochemical behaviour of the pesticide metam (MT) at a glassy carbon working electrode (GCE) and at a hanging mercury drop electrode (HMDE) was investigated. Different voltammetric techniques, including cyclic voltammetry (CV) and square wave voltammetry (SWV), were used. An anodic peak (independent of pH) at +1.46 V vs AgCl/Ag was observed in MTaqueous solution using the GCE. SWV calibration curves were plotted under optimized conditions (pH 2.5 and frequency 50 Hz), which showed a linear response for 17–29 mg L−1. Electrochemical reduction was also explored, using the HMDE. A well defined cathodic peak was recorded at −0.72 V vs AgCl/ Ag, dependent on pH. After optimizing the operating conditions (pH 10.1, frequency 150 Hz, potential deposition −0.20 V for 10 s), calibration curves was measured in the concentration range 2.5×10−1 to 1.0 mg L−1 using SWV. The electrochemical behaviour of this compound facilitated the development of a flow injection analysis (FIA) system with amperometric detection for the quantification of MT in commercial formulations and spiked water samples. An assessment of the optimal FIA conditions indicated that the best analytical results were obtained at a potential of +1.30 V, an injection volume of 207 μL and an overall flow rate of 2.4 ml min−1. Real samples were analysed via calibration curves over the concentration range 1.3×10−2 to 1.3 mg L−1. Recoveries from the real samples (spiked waters and commercial formulations) were between 97.4 and 105.5%. The precision of the proposed method was evaluated by assessing the relative standard deviation (RSD %) of ten consecutive determinations of one sample (1.0 mg L−1), and the value obtained was 1.5%.
Resumo:
This paper presents a complete, quadratic programming formulation of the standard thermal unit commitment problem in power generation planning, together with a novel iterative optimisation algorithm for its solution. The algorithm, based on a mixed-integer formulation of the problem, considers piecewise linear approximations of the quadratic fuel cost function that are dynamically updated in an iterative way, converging to the optimum; this avoids the requirement of resorting to quadratic programming, making the solution process much quicker. From extensive computational tests on a broad set of benchmark instances of this problem, the algorithm was found to be flexible and capable of easily incorporating different problem constraints. Indeed, it is able to tackle ramp constraints, which although very important in practice were rarely considered in previous publications. Most importantly, optimal solutions were obtained for several well-known benchmark instances, including instances of practical relevance, that are not yet known to have been solved to optimality. Computational experiments and their results showed that the method proposed is both simple and extremely effective.
Resumo:
Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.
Resumo:
Electricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement.
Resumo:
Electricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement.
Resumo:
This paper studies the information content of the chromosomes of twenty-three species. Several statistics considering different number of bases for alphabet character encoding are derived. Based on the resulting histograms, word delimiters and character relative frequencies are identified. The knowledge of this data allows moving along each chromosome while evaluating the flow of characters and words. The resulting flux of information is captured by means of Shannon entropy. The results are explored in the perspective of power law relationships allowing a quantitative evaluation of the DNA of the species.