814 resultados para Optical detection systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Investigation on impulsive signals, originated from Partial Discharge (PD) phenomena, represents an effective tool for preventing electric failures in High Voltage (HV) and Medium Voltage (MV) systems. The determination of both sensors and instruments bandwidths is the key to achieve meaningful measurements, that is to say, obtaining the maximum Signal-To-Noise Ratio (SNR). The optimum bandwidth depends on the characteristics of the system under test, which can be often represented as a transmission line characterized by signal attenuation and dispersion phenomena. It is therefore necessary to develop both models and techniques which can characterize accurately the PD propagation mechanisms in each system and work out the frequency characteristics of the PD pulses at detection point, in order to design proper sensors able to carry out PD measurement on-line with maximum SNR. Analytical models will be devised in order to predict PD propagation in MV apparatuses. Furthermore, simulation tools will be used where complex geometries make analytical models to be unfeasible. In particular, PD propagation in MV cables, transformers and switchgears will be investigated, taking into account both irradiated and conducted signals associated to PD events, in order to design proper sensors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synchronization is a key issue in any communication system, but it becomes fundamental in the navigation systems, which are entirely based on the estimation of the time delay of the signals coming from the satellites. Thus, even if synchronization has been a well known topic for many years, the introduction of new modulations and new physical layer techniques in the modern standards makes the traditional synchronization strategies completely ineffective. For this reason, the design of advanced and innovative techniques for synchronization in modern communication systems, like DVB-SH, DVB-T2, DVB-RCS, WiMAX, LTE, and in the modern navigation system, like Galileo, has been the topic of the activity. Recent years have seen the consolidation of two different trends: the introduction of Orthogonal Frequency Division Multiplexing (OFDM) in the communication systems, and of the Binary Offset Carrier (BOC) modulation in the modern Global Navigation Satellite Systems (GNSS). Thus, a particular attention has been given to the investigation of the synchronization algorithms in these areas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Satellite remote sensing has proved to be an effective support in timely detection and monitoring of marine oil pollution, mainly due to illegal ship discharges. In this context, we have developed a new methodology and technique for optical oil spill detection, which make use of MODIS L2 and MERIS L1B satellite top of atmosphere (TOA) reflectance imagery, for the first time in a highly automated way. The main idea was combining wide swaths and short revisit times of optical sensors with SAR observations, generally used in oil spill monitoring. This arises from the necessity to overcome the SAR reduced coverage and long revisit time of the monitoring area. This can be done now, given the MODIS and MERIS higher spatial resolution with respect to older sensors (250-300 m vs. 1 km), which consents the identification of smaller spills deriving from illicit discharge at sea. The procedure to obtain identifiable spills in optical reflectance images involves removal of oceanic and atmospheric natural variability, in order to enhance oil-water contrast; image clustering, which purpose is to segment the oil spill eventually presents in the image; finally, the application of a set of criteria for the elimination of those features which look like spills (look-alikes). The final result is a classification of oil spill candidate regions by means of a score based on the above criteria.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the increasing importance that nanotechnologies have in everyday life, it is not difficult to realize that also a single molecule, if properly designed, can be a device able to perform useful functions: such a chemical species is called chemosensor, that is a molecule of abiotic origin that signals the presence of matter or energy. Signal transduction is the mechanism by which an interaction of a sensor with an analyte yields a measurable form of energy. When dealing with the design of a chemosensor, we need to take into account a “communication requirement” between its three component: the receptor unit, responsible for the selective analyte binding, the spacer, which controls the geometry of the system and modulates the electronic interaction between the receptor and the signalling unit, whose physico-chemical properties change upon complexation. A luminescent chemosensor communicates a variation of the physico-chemical properties of the receptor unit with a luminescence output signal. This thesis work consists in the characterization of new molecular and nanoparticle-based system which can be used as sensitive materials for the construction of new optical transduction devices able to provide information about the concentration of analytes in solution. In particular two direction were taken. The first is to continue in the development of new chemosensors, that is the first step for the construction of reliable and efficient devices, and in particular the work will be focused on chemosensors for metal ions for biomedical and environmental applications. The second is to study more efficient and complex organized systems, such as derivatized silica nanoparticles. These system can potentially have higher sensitivity than molecular systems, and present many advantages, like the possibility to be ratiometric, higher Stokes shifts and lower signal-to-noise ratio.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This dissertation deals with the design and the characterization of novel reconfigurable silicon-on-insulator (SOI) devices to filter and route optical signals on-chip. Design is carried out through circuit simulations based on basic circuit elements (Building Blocks, BBs) in order to prove the feasibility of an approach allowing to move the design of Photonic Integrated Circuits (PICs) toward the system level. CMOS compatibility and large integration scale make SOI one of the most promising material to realize PICs. The concepts of generic foundry and BB based circuit simulations for the design are emerging as a solution to reduce the costs and increase the circuit complexity. To validate the BB based approach, the development of some of the most important BBs is performed first. A novel tunable coupler is also presented and it is demonstrated to be a valuable alternative to the known solutions. Two novel multi-element PICs are then analysed: a narrow linewidth single mode resonator and a passband filter with widely tunable bandwidth. Extensive circuit simulations are carried out to determine their performance, taking into account fabrication tolerances. The first PIC is based on two Grating Assisted Couplers in a ring resonator (RR) configuration. It is shown that a trade-off between performance, resonance bandwidth and device footprint has to be performed. The device could be employed to realize reconfigurable add-drop de/multiplexers. Sensitivity with respect to fabrication tolerances and spurious effects is however observed. The second PIC is based on an unbalanced Mach-Zehnder interferometer loaded with two RRs. Overall good performance and robustness to fabrication tolerances and nonlinear effects have confirmed its applicability for the realization of flexible optical systems. Simulated and measured devices behaviour is shown to be in agreement thus demonstrating the viability of a BB based approach to the design of complex PICs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To analyse and to compare the changes in the various optical coherence tomography (OCT), echogenicity and intravascular ultrasound virtual histology (VH) of the everolimus-eluting bioresorbable scaffold (ABSORB) degradation parameters during the first 12 months after ABSORB implantation. In the ABSORB study, changes in the appearance of the ABSORB scaffold were monitored over time using various intracoronary imaging modalities. The scaffold struts exhibited a progressive change in their black core area by OCT, in their ultrasound derived grey level intensity quantified by echogenicity, and in their backscattering ultrasound signal, identified as "pseudo dense-calcium" (DC) by VH.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES: We sought to compare the diagnostic performance of screen-film radiography, storage-phosphor radiography, and a flat-panel detector system in detecting forearm fractures and to classify distal radius fractures according to the Müller-AO and Frykman classifications compared with the true extent, depicted by anatomic preparation. MATERIALS AND METHODS: A total of 71 cadaver arms were fractured in a material testing machine creating different fractures of the radius and ulna as well as of the carpal bones. Radiographs of the complete forearm were evaluated by 3 radiologists, and anatomic preparation was used as standard of reference in a receiver operating curve analysis. RESULTS: The highest diagnostic performance was obtained for the detection of distal radius fractures with area under the receiver operating curve (AUC) values of 0.959 for screen-film radiography, 0.966 for storage-phosphor radiography, and 0.971 for the flat-panel detector system (P > 0.05). Exact classification was slightly better for the Frykman (kappa values of 0.457-0.478) compared with the Müller-AO classification (kappa values of 0.404-0.447), but agreement can be considered as moderate for both classifications. CONCLUSIONS: The 3 imaging systems showed a comparable diagnostic performance in detecting forearm fractures. A high diagnostic performance was demonstrated for distal radius fractures and conventional radiography can be routinely performed for fracture detection. However, compared with anatomic preparation, depiction of the true extent of distal radius fractures was limited and the severity of distal radius fractures tends to be underestimated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Doppler Optical Coherence Tomography (DOCT) is a biomedical imaging technique that allows simultaneous structural imaging and flow monitoring inside biological tissues and materials with spatial resolution in the micrometer scale. It has recently been applied to the characterization of microfluidic systems. Structural and flow imaging of novel microfluidics platforms for cytotoxicologic applications were obtained with a real-time, Near Infrared Spectral Domain DOCT system. Characteristics such as flow homogeneity in the chamber, which is one of the most important parameters for cell culture, are investigated. OCT and DOCT images were used to monitor flow inside a specific platform that is based on microchannel division for a better flow homogeneity. In particular, the evolution of flow profile at the transition between the microchannel structure and the chamber is studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When drilling ice cores deeper than ∼100 m, drill liquid is required to maintain ice-core quality and to limit borehole closure. Due to high-pressure air bubbles in the ice, the ice core can crack during drilling and core retrieval, typically at 600–1200 m depth in Greenland. Ice from this 'brittle zone' can be contaminated by drill liquid as it seeps through cracks into the core. Continuous flow analysis (CFA) systems are routinely used to analyse ice for chemical impurities, so the detection of drill liquid is important for validating accurate measurements and avoiding potential instrument damage. An optical detector was constructed to identify drill liquid in CFA tubing by ultraviolet absorption spectroscopy at a wavelength of 290 nm. The set-up was successfully field-tested in the frame of the NEEM ice-core drilling project in Greenland. A total of 27 cases of drill liquid contamination were identified during the analysis of 175 m of brittle zone ice. The analyses most strongly affected by drill liquid contamination include insoluble dust particles, electrolytic conductivity, ammonium, hydrogen peroxide and sulphate. This method may also be applied to other types of drill liquid used at other drill sites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

While cancer is one of the greatest challenges to public health care, prostate cancer was chosen as cancer model to develop a more accurate imaging assessment than those currently available. Indeed, an efficient imaging technique which considerably improves the sensitivity and specificity of the diagnostic and predicting the cancer behavior would be extremely valuable. The concept of optoacoustic imaging using home-made functionalized gold nanoparticles coupled to an antibody targeting PSMA (prostate specific membrane antigen) was evaluated on different cancer cell lines to demonstrate the specificity of the designed platform. Two commonly used microscopy techniques (indirect fluorescence and scanning electron microscopy) showed their straightforwardness and versatility for the nanoparticle binding investigations regardless the composition of the investigated nanoobjects. Moreover most of the research laboratories and centers are equipped with fluorescence microscopes, so indirect fluorescence using Quantum dots can be used for any active targeting nanocarriers (polymers, ceramics, metals, etc.). The second technique based on backscattered electron is not only limited to gold nanoparticles but also suits for any study of metallic nanoparticles as the electronic density difference between the nanoparticles and binding surface stays high enough. Optoacoustic imaging was finally performed on a 3D cellular model to assess and prove the concept of the developed platform.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a new cruciform donor–acceptor molecule 2,2'-((5,5'-(3,7-dicyano-2,6-bis(dihexylamino)benzo[1,2-b:4,5-b']difuran-4,8-diyl)bis(thiophene-5,2-diyl))bis (methanylylidene))dimalononitrile (BDFTM) is reported. The compound exhibits both remarkable solid-state red emission and p-type semiconducting behavior. The dual functions of BDFTM are ascribed to its unique crystal structure, in which there are no intermolecular face-to-face π–π interactions, but the molecules are associated by intermolecular CN…π and H-bonding interactions. Firstly, BDFTM exhibits aggregation-induced emission; that is, in solution, it is almost non-emissive but becomes significantly fluorescent after aggregation. The emission quantum yield and average lifetime are measured to be 0.16 and 2.02 ns, respectively. Crystalline microrods and microplates of BDFTM show typical optical waveguiding behaviors with a rather low optical loss coefficient. Moreover, microplates of BDFTM can function as planar optical microcavities which can confine the emitted photons by the reflection at the crystal edges. Thin films show an air-stable p-type semiconducting property with a hole mobility up to 0.0015 cm2V−1s−1. Notably, an OFET with a thin film of BDFTM is successfully utilized for highly sensitive and selective detection of H2S gas (down to ppb levels).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE Precise temperature measurements in the magnetic field are indispensable for MR safety studies and for temperature calibration during MR-guided thermotherapy. In this work, the interference of two commonly used fiber-optical temperature measurement systems with the static magnetic field B0 was determined. METHODS Two fiber-optical temperature measurement systems, a GaAs-semiconductor and a phosphorescent phosphor ceramic, were compared for temperature measurements in B0 . The probes and a glass thermometer for reference were placed in an MR-compatible tube phantom within a water bath. Temperature measurements were carried out at three different MR systems covering static magnetic fields up to B0  = 9.4T, and water temperatures were changed between 25°C and 65°C. RESULTS The GaAs-probe significantly underestimated absolute temperatures by an amount related to the square of B0 . A maximum difference of ΔT = -4.6°C was seen at 9.4T. No systematic temperature difference was found with the phosphor ceramic probe. For both systems, the measurements were not dependent on the orientation of the sensor to B0 . CONCLUSION Temperature measurements with the phosphor ceramic probe are immune to magnetic fields up to 9.4T, whereas the GaAs-probes either require a recalibration inside the MR system or a correction based on the square of B0 . Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Any image processing object detection algorithm somehow tries to integrate the object light (Recognition Step) and applies statistical criteria to distinguish objects of interest from other objects or from pure background (Decision Step). There are various possibilities how these two basic steps can be realized, as can be seen in the different proposed detection methods in the literature. An ideal detection algorithm should provide high recognition sensitiv ity with high decision accuracy and require a reasonable computation effort . In reality, a gain in sensitivity is usually only possible with a loss in decision accuracy and with a higher computational effort. So, automatic detection of faint streaks is still a challenge. This paper presents a detection algorithm using spatial filters simulating the geometrical form of possible streaks on a CCD image. This is realized by image convolution. The goal of this method is to generate a more or less perfect match between a streak and a filter by varying the length and orientation of the filters. The convolution answers are accepted or rejected according to an overall threshold given by the ackground statistics. This approach yields as a first result a huge amount of accepted answers due to filters partially covering streaks or remaining stars. To avoid this, a set of additional acceptance criteria has been included in the detection method. All criteria parameters are justified by background and streak statistics and they affect the detection sensitivity only marginally. Tests on images containing simulated streaks and on real images containing satellite streaks show a very promising sensitivity, reliability and running speed for this detection method. Since all method parameters are based on statistics, the true alarm, as well as the false alarm probability, are well controllable. Moreover, the proposed method does not pose any extraordinary demands on the computer hardware and on the image acquisition process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to classify and detect intraretinal hemorrhage (IRH) in spectral domain optical coherence tomography (SD-OCT). METHODS Initially the presentation of IRH in BRVO-patients in SD-OCT was described by one reader comparing color-fundus (CF) and SD-OCT using dedicated software. Based on these established characteristics, the presence and the severity of IRH in SD-OCT and CF were assessed by two other masked readers and the inter-device and the inter-observer agreement were evaluated. Further the area of IRH was compared. RESULTS About 895 single B-scans of 24 eyes were analyzed. About 61% of SD-OCT scans and 46% of the CF-images were graded for the presence of IRH (concordance: 73%, inter-device agreement: k = 0.5). However, subdivided into previously established severity levels of dense (CF: 21.3% versus SD-OCT: 34.7%, k = 0.2), flame-like (CF: 15.5% versus SD-OCT: 45.5%, k = 0.3), and dot-like (CF: 32% versus SD-OCT: 24.4%, k = 0.2) IRH, the inter-device agreement was weak. The inter-observer agreement was strong with k = 0.9 for SD-OCT and k = 0.8 for CF. The mean area of IRH detected on SD-OCT was significantly greater than on CF (SD-OCT: 11.5 ± 4.3 mm(2) versus CF: 8.1 ± 5.5 mm(2), p = 0.008). CONCLUSIONS IRH seems to be detectable on SD-OCT; however, the previously established severity grading agreed weakly with that assessed by CF.