685 resultados para Ophthalmia, Sympathetic.
Resumo:
Introduction: Nocturnal frontal lobe epilepsy (NFLE) is a distinct syndrome of partial epilepsy whose clinical features comprise a spectrum of paroxysmal motor manifestations of variable duration and complexity, arising from sleep. Cardiovascular changes during NFLE seizures have previously been observed, however the extent of these modifications and their relationship with seizure onset has not been analyzed in detail. Objective: Aim of present study is to evaluate NFLE seizure related changes in heart rate (HR) and in sympathetic/parasympathetic balance through wavelet analysis of HR variability (HRV). Methods: We evaluated the whole night digitally recorded video-polysomnography (VPSG) of 9 patients diagnosed with NFLE with no history of cardiac disorders and normal cardiac examinations. Events with features of NFLE seizures were selected independently by three examiners and included in the study only if a consensus was reached. Heart rate was evaluated by measuring the interval between two consecutive R-waves of QRS complexes (RRi). RRi series were digitally calculated for a period of 20 minutes, including the seizures and resampled at 10 Hz using cubic spline interpolation. A multiresolution analysis was performed (Daubechies-16 form), and the squared level specific amplitude coefficients were summed across appropriate decomposition levels in order to compute total band powers in bands of interest (LF: 0.039062 - 0.156248, HF: 0.156248 - 0.624992). A general linear model was then applied to estimate changes in RRi, LF and HF powers during three different period (Basal) (30 sec, at least 30 sec before seizure onset, during which no movements occurred and autonomic conditions resulted stationary); pre-seizure period (preSP) (10 sec preceding seizure onset) and seizure period (SP) corresponding to the clinical manifestations. For one of the patients (patient 9) three seizures associated with ictal asystole were recorded, hence he was treated separately. Results: Group analysis performed on 8 patients (41 seizures) showed that RRi remained unchanged during the preSP, while a significant tachycardia was observed in the SP. A significant increase in the LF component was instead observed during both the preSP and the SP (p<0.001) while HF component decreased only in the SP (p<0.001). For patient 9 during the preSP and in the first part of SP a significant tachycardia was observed associated with an increased sympathetic activity (increased LF absolute values and LF%). In the second part of the SP a progressive decrease in HR that gradually exceeded basal values occurred before IA. Bradycardia was associated with an increase in parasympathetic activity (increased HF absolute values and HF%) contrasted by a further increase in LF until the occurrence of IA. Conclusions: These data suggest that changes in autonomic balance toward a sympathetic prevalence always preceded clinical seizure onset in NFLE, even when HR changes were not yet evident, confirming that wavelet analysis is a sensitive technique to detect sudden variations of autonomic balance occurring during transient phenomena. Finally we demonstrated that epileptic asystole is associated with a parasympathetic hypertonus counteracted by a marked sympathetic activation.
Resumo:
Es wurde eine retrograde Analyse von Patientenakten der Schmerzambulanzder Klinik für Anästhesiologie der Universitätsklinik Mainz durchgeführt, indie alle Patienten mit bestimmten Einschlußkriterien derBehandlungsjahrgänge1996 und 1997 aufgenommen wurden.Dies waren die vier Diagnosegruppen multilokuläre Schmerzen,Rückenschmerzen, Phantomschmerz und Morbus Sudeck (SRD). Das Ziel dervorliegenden Arbeit war die Frage nach der Häufigkeit von Psychotherapie alsergänzende Therapieempfehlung seitens der Schmerzambulanz herauszuarbeiten.Psychotherapie (ambulant, stationär, Bestandteil vonRehabilitationsaufenthalten) in vielgestaltiger Weise wurde häufigerempfohlen, 1. je länger die Schmerzerkrankung bestand,2. je jünger die Patienten waren,3. je länger sie arbeitsunfähig waren,4. wenn belastende biographische Ereignisse festgestellt werden konnten5. je höher das Chronifizierungsstadium nach Gerbershagen war. Im Einzelnenspielten die zeitlichen Aspekte der Erkrankung, Lokalisationseinflüsse sowieAspekte vorheriger Behandlungen und schmerzbedingter Krankenhausaufenthalteeine besondere Rolle.6. wenn Patienten nicht berentet waren.
Resumo:
Several studies showed that sleep loss/fragmentation may have a negative impact on cognitive performance, mood and autonomic activity. Specific neurocognitive domains, such as executive function (i.e.,prefrontal cortex), seems to be particularly vulnerable to sleep loss. Pearson et al.(2006) evaluated 16 RLS patients compared to controls by cognitive tests, including those particularly sensitive to prefrontal cortical (PFC) functioning and sleep loss. RLS patients showed significant deficits on two of the three PFC tests. It has been recently reported that RLS is associated with psychiatric manifestations. A high prevalence of depressive symptoms has been found in patients with RLS(Rothdach AJ et al., 2000). RLS could cause depression through its adverse influences on sleep and energy. On the other hand, symptoms of depression such as sleep deprivation, poor nutrition or lack of exercise may predispose an individual to the development of RLS. Moreover, depressed patients may amplify mild RLS, making occasional RLS symptoms appear to meet threshold criteria. The specific treatment of depression could be also implicated, since antidepressant compounds may worsen RLS and PLMD(Picchietti D et al., 2005; Damsa C et al., 2004). Interestingly, treatments used to relieve RLS symptoms (dopamine agonists) seem to have an antidepressant effects in RLS depressed patients(Saletu M et al., 2002&2003). During normal sleep there is a well-regulated pattern of the autonomic function, modulated by changes in sleep stages. It has been reported that chronic sleep deprivation is associated with cardiovascular events. In patients with sleep fragmentation increased number of arousals and increased cyclic alternating pattern rate is associated with an increase in sympathetic activity. It has been demonstrated that PLMS occurrence is associated with a shift to increased sympathetic activity without significant changes in cardiac parasympathetic activity (Sforza E et al., 2005). An increased association of RLS with hypertension and heart disease has been documented in several studies(Ulfberg J et al., 2001; Ohayon MM et al., 2002).
Resumo:
Spinal cord injury (SCI) results not only in paralysis; but it is also associated with a range of autonomic dysregulation that can interfere with cardiovascular, bladder, bowel, temperature, and sexual function. The entity of the autonomic dysfunction is related to the level and severity of injury to descending autonomic (sympathetic) pathways. For many years there was limited awareness of these issues and the attention given to them by the scientific and medical community was scarce. Yet, even if a new system to document the impact of SCI on autonomic function has recently been proposed, the current standard of assessment of SCI (American Spinal Injury Association (ASIA) examination) evaluates motor and sensory pathways, but not severity of injury to autonomic pathways. Beside the severe impact on quality of life, autonomic dysfunction in persons with SCI is associated with increased risk of cardiovascular disease and mortality. Therefore, obtaining information regarding autonomic function in persons with SCI is pivotal and clinical examinations and laboratory evaluations to detect the presence of autonomic dysfunction and quantitate its severity are mandatory. Furthermore, previous studies demonstrated that there is an intimate relationship between the autonomic nervous system and sleep from anatomical, physiological, and neurochemical points of view. Although, even if previous epidemiological studies demonstrated that sleep problems are common in spinal cord injury (SCI), so far only limited polysomnographic (PSG) data are available. Finally, until now, circadian and state dependent autonomic regulation of blood pressure (BP), heart rate (HR) and body core temperature (BcT) were never assessed in SCI patients. Aim of the current study was to establish the association between the autonomic control of the cardiovascular function and thermoregulation, sleep parameters and increased cardiovascular risk in SCI patients.
Resumo:
Il trigono della vescica urinaria (UBT) è un'area limitata attraverso la quale penetrano nella vescica la maggior parte dei vasi e fibre e in cui le fibre nervose e neuroni intramurali sono più concentrati. Mediante l’utilizzo combinato di un tracciante retrogrado(FB) e dell’immunoistochimica sono stati valutati il fenotipo e l’area del soma dei neuroni dei gangli spinali (DRG), dei neuroni post-gangliari, il fenotipo dei gangli della catena simpatica (STG) e i gangli mesenterici caudali (CMG) innervanti l’UBT. - Caratterizzazione dei neuroni dei DRG con: peptide correlato al gene della calcitonina (CGRP)(30±3%, 29±3%, rispettivamente), sostanza P(SP)(26±8%, 27±12%), ossido nitrico sintasi neuronale (nNOS)(21±4%; 26±7%), neurofilamento 200kDa (NF200)(75±14%, 81±7% ) , transient receptor potential vanilloid1 (TRPV1)(48±13%, 43±6%) e isolectina-B4-positivi (IB4) (56±6%;43±10%). I neuroni sensoriali, distribuiti da L2 a Ca1 (DRG), hanno presentato una localizzazione segmentale, mostrando maggior densità nei DRG L4-L5 e S2-S4. I neuroni sensoriali lombari sono risultati significativamente più grandi di quelle sacrali (1.112±624μm2 vs716±421μm2). Complessivamente, questi dati indicano che le vie lombari e sacrali probabilmente svolgono ruoli diversi nella trasmissione sensitiva del trigono della vescica urinaria. -I neuroni FB+ della STG e dei CMG sono risultati immunoreattivi per la tirosina idrossilasi (TH)(66±10,1%, 53±8,2%, rispettivamente), la dopamina beta-idrossilasi (DβH)(62±6,2%, 52±6,2%), neuropeptideY (NPY)(59±8%; 66±7%), CGRP(24±3%, 22±3%), SP(22±2%; 38±8%), polipeptide intestinale vasoattivo (VIP)(19±2%; 35±4%), nNOS(15±2%; 33±8%), trasportatore vescicolare dell'acetilcolina (VAChT)(15±2%; 35±5%), leu-encefalina (LENK)(14±7%; 26±9%), e somatostatina (SOM)(12±3%;32±7%).Il numero medio di neuroni FB+ (1845,1±259,3) era nella STG in L1-S3, con i pirenofori più piccoli (465,6±82.7μm2). Un gran numero (4287,5±1450,6) di neuroni FB+ di piccole dimensioni (476,1±103,9μm2) sono stati localizzati lungo il margine dei CMG. Il maggior numero (4793,3±1990,8) di neuroni FB + è stato osservato nel plesso pelvico, dove i neuroni marcati erano raggruppati in micro-gangli e con pirenoforo ancora più piccolo (374,9±85,4 μm2).
Resumo:
Pochi studi hanno indagato il profilo dei sintomi non-motori nella malattia di Parkinson associata al gene glucocerebrosidasi (GBA). Questo studio è mirato alla caratterizzazione dei sintomi non-motori, con particolare attenzione alla valutazione delle funzioni neurovegetativa, cognitiva e comportamentale, nel parkinsonismo associato a mutazione del gene GBA con la finalità di verificare se tali sintomi non-motori siano parte dello spettro clinico di questi pazienti. E’ stato condotto su una coorte di pazienti affetti da malattia di Parkinson che erano stati tutti sottoposti ad una analisi genetica per la ricerca di mutazioni in uno dei geni finora associati alla malattia di Parkinson. All’interno di questa coorte omogenea sono stati identificati due gruppi diversi in relazione al genotipo (pazienti portatori della mutazione GBA e pazienti non portatori di nessuna mutazione) e le caratteristiche non-motorie sono state confrontate nei due gruppi. Sono state pertanto indagati il sistema nervoso autonomo, mediante studio dei riflessi cardiovascolari e analisi dei sintomi disautonomici, e le funzioni cognitivo-comportamentali in pazienti affetti da malattia di Parkinson associata a mutazione del gene GBA. I risultati sono stati messi a confronto con il gruppo di controllo. Lo studio ha mostrato che i pazienti affetti da malattia di Parkinson associata a mutazione del gene GBA presentavano maggiore frequenza di disfunzioni ortosimpatiche, depressione, ansia, apatia, impulsività, oltre che di disturbi del controllo degli impulsi rispetto ai pazienti non portatori. In conclusione, i pazienti GBA positivi possono esprimere una sintomatologia non-motoria multidominio con sintomi autonomici, cognitivi e comportamentali in primo piano. Pertanto l’impostazione terapeutica in questi pazienti dovrebbe includere una accurata valutazione dei sintomi non-motori e un loro monitoraggio nel follow up clinico, allo scopo di ottimizzare i risultati e ridurre i rischi di complicazioni.
Resumo:
Pheochromocytomas are rare neoplasias of neural crest origin arising from chromaffin cells of the adrenal medulla and sympathetic ganglia (extra-adrenal pheochromocytoma). Pheochromocytoma that develop in rats homozygous for a loss-of-function mutation in p27Kip1 (MENX syndrome) show a clear progression from hyperplasia to tumor, offering the possibility to gain insight into tumor pathobiology. We compared the gene-expression signatures of both adrenomedullary hyperplasia and pheochromocytoma with normal rat adrenal medulla. Hyperplasia and tumor show very similar transcriptome profiles, indicating early determination of the tumorigenic signature. Overrepresentation of developmentally regulated neural genes was a feature of the rat lesions. Quantitative RT-PCR validated the up-regulation of 11 genes, including some involved in neural development: Cdkn2a, Cdkn2c, Neurod1, Gal, Bmp7, and Phox2a. Overexpression of these genes precedes histological changes in affected adrenal glands. Their presence at early stages of tumorigenesis indicates they are not acquired during progression and may be a result of the lack of functional p27Kip1. Adrenal and extra-adrenal pheochromocytoma development clearly follows diverged molecular pathways in MENX rats. To correlate these findings to human pheochromocytoma, we studied nine genes overexpressed in the rat lesions in 46 sporadic and familial human pheochromocytomas. The expression of GAL, DGKH, BMP7, PHOX2A, L1CAM, TCTE1, EBF3, SOX4, and HASH1 was up-regulated, although with different frequencies. Immunohistochemical staining detected high L1CAM expression selectively in 27 human pheochromocytomas but not in 140 nonchromaffin neuroendocrine tumors. These studies reveal clues to the molecular pathways involved in rat and human pheochromocytoma and identify previously unexplored biomarkers for clinical use.
Resumo:
Prediction of malignant behaviour of pheochromocytomas/sympathetic paragangliomas (PCCs/PGLs) is very difficult if not impossible on a histopathological basis. In a familial setting, it is well known that succinate dehydrogenase subunit B (SDHB)-associated PCC/PGL very often metastasise. Recently, absence of SDHB expression as measured through immunohistochemistry was shown to be an excellent indicator of the presence of an SDH germline mutation in PCC/PGL. SDHB loss is believed to lead to tumour formation by activation of hypoxia signals. To clarify the potential use of SDHB immunohistochemistry as a marker of malignancy in PCC/PGL and its association with classic hypoxia signalling we examined SDHB, hypoxia inducible factor-1 (Hif-1 ) and its targets CA-9 and GLUT-1 expression on protein level using immunohistochemistry on a tissue micro array on a series of familial and sporadic tumours of 115 patients. Survival data was available for 66 patients. SDHB protein expression was lost in the tumour tissue of 12 of 99 patients. Of those 12 patients, 5 had an SDHB germline mutation, in 4 patients no germline mutation was detected and mutational status remained unknown in parts in 3 patients. Loss of SDHB expression was not associated with increased classic hypoxia signalling as detected by Hif-1 , CA-9 or GLUT-1 staining. Loss of SDHB expression was associated with an adverse outcome. The lack of correlation of SDHB loss with classic hypoxia signals argues against the current hypoxia hypothesis in malignant PCC/PGL. We suggest SDHB protein loss as a marker of adverse outcome both in sporadic and in familial PCC/PGL.
Resumo:
Introduction: As a previous study revealed, arts speech therapy (AST) affects cardiorespiratory interaction [1]. The aim of the present study was to investigate whether AST also has effects on brain oxygenation and hemodynamics measured non-invasively using near-infrared spectroscopy (NIRS). Material and methods: NIRS measurements were performed on 17 subjects (8 men and 9 women, mean age: 35.6 ± 12.7 y) during AST. Each measurement lasted 35 min, comprising 8 min pre-baseline, 10 min recitation and 20 min post-baseline. For each subject, measurements were performed for three different AST recitation tasks (recitation of alliterative, hexameter and prose verse). Relative concentration changes of oxyhemoglobin (Δ[O2Hb]) and deoxyhemoglobin (Δ[HHb]) as well as the tissue oxygenation index (TOI) were measured using a Hamamatsu NIRO300 NIRS device and a sensor placed on the subjects forehead. Movement artifacts were removed using a novel method [2]. Statistical analysis (Wilcoxon test) was applied to the data to investigate (i) if the recitation causes changes in the median values and/or in the Mayer wave power spectral density (MW-PSD, range: 0.07–0.13 Hz) of Δ[O2Hb], Δ[HHb] or TOI, and (ii) if these changes vary between the 3 recitation forms. Results: For all three recitation styles a significant (p < 0.05) decrease in Δ[O2Hb] and TOI was found, indicating a decrease in blood flow. These decreases did not vary significantly between the three styles. MW-PSD increased significantly for Δ[O2Hb] when reciting the hexameter and prose verse, and for Δ[HHb] and TOI when reciting alliterations and hexameter, representing an increase in Mayer waves. The MW-PSD increase for Δ[O2Hb] was significantly larger for the hexameter verse compared to alliterative and prose verse Conclusion: The study showed that AST affects brain hemodynamics (oxygenation, blood flow and Mayer waves). Recitation caused a significant decrease in cerebral blood flow for all recitation styles as well as an increase in Mayer waves, particularly for the hexameter, which may indicate a sympathetic activation. References 1. D. Cysarz, D. von Bonin, H. Lackner, P. Heusser, M. Moser, H. Bettermann. Am J Physiol Heart Circ Physiol, 287 (2) (2004), pp. H579–H587 2. F. Scholkmann, S. Spichtig, T. Muehlemann, M. Wolf. Physiol Meas, 31 (5) (2010), pp. 649–662
Resumo:
Microneurography is a method suitable for recording intraneural single or multiunit action potentials in conscious subjects. Microneurography has rarely been applied to animal experiments, where more invasive methods, like the teased fiber recording technique, are widely used. We have tested the feasibility of microneurographic recordings from the peripheral nerves of rats. Tungsten microelectrodes were inserted into the sciatic nerve at mid-thigh level. Single or multiunit action potentials evoked by regular electrical stimulation were recorded, digitized and displayed as a raster plot of latencies. The method allows unambiguous recording and recognition of single C-fiber action potentials from an in vivo preparation, with minimal disruption of the nerve being recorded. Multiple C-fibers can be recorded simultaneously for several hours, and if the animal is allowed to recover, repeated recording sessions can be obtained from the same nerve at the same level over a period of weeks or months. Also, single C units can be functionally identified by their changes in latency to natural stimuli, and insensitive units can be recognized as 'silent' nociceptors or sympathetic efferents by their distinctive profiles of activity-dependent slowing during repetitive electrical stimulation, or by the effect on spontaneous efferent activity of a proximal anesthetic block. Moreover, information about the biophysical properties of C axons can be obtained from their latency recovery cycles. Finally, we show that this preparation is potentially suitable for the study of C-fiber behavior in models of neuropathies and nerve lesions, both under resting conditions and in response to drug administration.
Resumo:
Malignant pheochromocytomas (PCCs) and paragangliomas (PGLs) are rare disorders arising from the adrenal gland, from the glomera along parasympathetic nerves or from paraganglia along the sympathetic trunk. According to the WHO classification, malignancy of PCCs and PGLs is defined by the presence of metastases at non-chromaffin sites distant from that of the primary tumor and not by local invasion. The overall prognosis of metastasized PCCs/PGLs is poor. Surgery offers currently the only change of cure. Preferably, the discrimination between malignant and benign PCCs/PGLs should be made preoperatively.
Resumo:
Veteran endurance athletes have an increased risk of developing atrial fibrillation (AF), with a striking male predominance. We hypothesized that male athletes were more prone to atrial and ventricular remodeling and investigated the signal-averaged P wave and factors that promote the occurrence of AF. Nonelite athletes scheduled to participate in the 2010 Grand Prix of Bern, a 10-mile race, were invited. Of the 873 marathon and nonmarathon runners who were willing to participate, 68 female and 70 male athletes were randomly selected. The runners with cardiovascular disease or elevated blood pressure (>140/90 mm Hg) were excluded. Thus, 121 athletes were entered into the final analysis. Their mean age was 42 ± 7 years. No gender differences were found for age, lifetime training hours, or race time. The male athletes had a significantly longer signal-averaged P-wave duration (136 ± 12 vs 122 ± 10 ms; p <0.001). The left atrial volume was larger in the male athletes (56 ± 13 vs 49 ± 10 ml; p = 0.001), while left atrial volume index showed no differences (29 ± 7 vs 30 ± 6 ml/m²; p = 0.332). In male athletes, the left ventricular mass index (107 ± 17 vs 86 ± 16 g/m²; p <0.001) and relative wall thickness (0.44 ± 0.06 vs 0.41 ± 0.07; p = 0.004) were greater. No differences were found in the left ventricular ejection fraction (63 ± 4% vs 66 ± 6%; p = 0.112) and mitral annular tissue Doppler e' velocity (10.9 ± 1.5 vs 10.6 ± 1.5 cm/s; p = 0.187). However, the tissue Doppler a' velocity was higher (8.7 ± 1.2 vs 7.6 ± 1.3 cm/s; p < 0.001) in the male athletes. Male athletes had a higher systolic blood pressure at rest (123 ± 9 vs 110 ± 11 mm Hg; p < 0.001) and at peak exercise (180 ± 15 vs 169 ± 19 mm Hg; p = 0.001). In the frequency domain analysis of heart rate variability, the sympatho-vagal balance, represented by the low/high-frequency power ratio, was significantly greater in male athletes (5.8 ± 2.8 vs 3.9 ± 1.9; p < 0.001). Four athletes (3.3%) had at least one documented episode of paroxysmal AF, all were men (p = 0.042). In conclusion, for a comparable amount of training and performance, male athletes showed a more pronounced atrial remodeling, a concentric type of ventricular remodeling, and an altered diastolic function. A higher blood pressure at rest and during exercise and a higher sympathetic tone might be causal. The altered left atrial substrate might facilitate the occurrence of AF.
Resumo:
Splanchnic vasodilation triggers the development of the hyperdynamic circulatory syndrome in portal hypertension. Neuropeptide Y (NPY), a sympathetic co-transmitter of norepinephrine, improves contractility in mesenteric arteries of pre-hepatic portal hypertensive rats. Therefore, we investigated the effect of NPY on mesenteric arterial contractility in vitro and in vivo in cirrhotic ascitic rats, as well as the vasoactive pathways involved.
Resumo:
Stress and depressive symptoms have been associated with impaired endothelial function as measured by brachial artery flow-mediated dilation (FMD), possibly through repeated and heightened activation of the sympathetic nervous system. Behavioral correlates of depression, such as satisfaction with leisure activities (i.e., leisure satisfaction), may also be associated with endothelial function via their association with depressive symptoms. This study examined the longitudinal associations between stress, depressive symptoms, leisure satisfaction, and endothelial function as measured by FMD.
Resumo:
Arts speech therapy (AST) is a therapeutic method within complementary medicine and has been practiced for decades for various medical conditions. It comprises listening and the recitation of different forms of speech exercises under the guidance of a licensed speech therapist. The aim of our study was to noninvasively investigate whether different types of recitation influence hemodynamics and oxygenation in the brain and skeletal leg muscle using near-infrared spectroscopy (NIRS). Seventeen healthy volunteers (eight men and nine women, mean age ± standard deviation 35.6 ± 12.7 years) were enrolled in the study. Each subject was measured three times on different days with the different types of recitation: hexameter, alliteration, and prose verse. Before, during, and after recitation, relative concentration changes of oxyhemoglobin (Δ[O2Hb]), deoxyhemoglobin (Δ[HHb]), total hemoglobin (Δ[tHb]), and tissue oxygenation saturation (StO2) were measured in the brain and skeletal leg muscle using a NIRS device. The study was performed with a randomized crossover design. Significant concentration changes were found during recitation of all verses, with mainly a decrease in Δ[O2Hb] and ΔStO2 in the brain, and an increase in Δ[O2Hb] and Δ[tHb] in the leg muscle during recitation. After the recitations, significant changes were mainly increases of Δ[HHb] and Δ[tHb] in the calf muscle. The Mayer wave spectral power (MWP) was also significantly affected, i.e., mainly the MWP of the Δ[O2Hb] and Δ[tHb] increased in the brain during recitation of hexameter and prose verse. The changes in MWP were also significantly different between hexameter and alliteration, and hexameter and prose. Possible physiological explanations for these changes are discussed. A probable reason is a different effect of recitations on the sympathetic nervous system. In conclusion, these changes show that AST has relevant effects on the hemodynamics and oxygenation of the brain and muscle.