931 resultados para Operaatio Iraqi Freedom
Resumo:
P-representation techniques, which have been very successful in quantum optics and in other fields, are also useful for general bosonic quantum-dynamical many-body calculations such as Bose-Einstein condensation. We introduce a representation called the gauge P representation, which greatly widens the range of tractable problems. Our treatment results in an infinite set of possible time evolution equations, depending on arbitrary gauge functions that can be optimized for a given quantum system. In some cases, previous methods can give erroneous results, due to the usual assumption of vanishing boundary conditions being invalid for those particular systems. Solutions are given to this boundary-term problem for all the cases where it is known to occur: two-photon absorption and the single-mode laser. We also provide some brief guidelines on how to apply the stochastic gauge method to other systems in general, quantify the freedom of choice in the resulting equations, and make a comparison to related recent developments.
Resumo:
Three men inspecting tram at South Brisbane station, Brisbane Australia, during No War Toys outing. WILPF (Womens International League for Peace and Freedom) banner can be seen on the front of the tram. The Women's International League for Peace and Freedom was founded in 1915. It works towards disarmament, political solutions to international conflicts, equal participation of women in activities, economic justice and the elimination of racism and discrimination. To achieve these goals, the Women's International League for Peace and Freedom organises meetings, conferences and campaigns.
Resumo:
Tram leaving South Brisbane Station, Brisbane, Australia during "No war toys" outing.
Resumo:
Algorithms for explicit integration of structural dynamics problems with multiple time steps (subcycling) are investigated. Only one such algorithm, due to Smolinski and Sleith has proved to be stable in a classical sense. A simplified version of this algorithm that retains its stability is presented. However, as with the original version, it can be shown to sacrifice accuracy to achieve stability. Another algorithm in use is shown to be only statistically stable, in that a probability of stability can be assigned if appropriate time step limits are observed. This probability improves rapidly with the number of degrees of freedom in a finite element model. The stability problems are shown to be a property of the central difference method itself, which is modified to give the subcycling algorithm. A related problem is shown to arise when a constraint equation in time is introduced into a time-continuous space-time finite element model. (C) 1998 Elsevier Science S.A.
Resumo:
The integral of the Wigner function over a subregion of the phase space of a quantum system may be less than zero or greater than one. It is shown that for systems with 1 degree of freedom, the problem of determining the best possible upper and lower bounds on such an integral, over an possible states, reduces to the problem of finding the greatest and least eigenvalues of a Hermitian operator corresponding to the subregion. The problem is solved exactly in the case of an arbitrary elliptical region. These bounds provide checks on experimentally measured quasiprobability distributions.
Resumo:
I shall discuss the quantum and classical dynamics of a class of nonlinear Hamiltonian systems. The discussion will be restricted to systems with one degree of freedom. Such systems cannot exhibit chaos, unless the Hamiltonians are time dependent. Thus we shall consider systems with a potential function that has a higher than quadratic dependence on the position and, furthermore, we shall allow the potential function to be a periodic function of time. This is the simplest class of Hamiltonian system that can exhibit chaotic dynamics. I shall show how such systems can be realized in atom optics, where very cord atoms interact with optical dipole potentials of a far-off resonance laser. Such systems are ideal for quantum chaos studies as (i) the energy of the atom is small and action scales are of the order of Planck's constant, (ii) the systems are almost perfectly isolated from the decohering effects of the environment and (iii) optical methods enable exquisite time dependent control of the mechanical potentials seen by the atoms.
Resumo:
We derive a general thermo-mechanical theory for particulate materials consisting of granules of arbitrary whose material points possess three translational and three independent rotational degrees of freedom. Additional field variables are the translational and rotational granular temperatures, the kinetic energies shape and size. The kinematics of granulate is described within the framework of a polar continuum theory of the velocity and spin fluctuations respectively and the usual thermodynamic temperature. We distinguish between averages over particle categories (averages in mass/velocity and moment of inertia/spin space, respectively) and particle phases where the average extends over distinct subsets of particle categories (multi phase flows). The relationship between the thermal energy in the granular system and phonon energy in a molecular system is briefly discussed in the main body of the paper and discussed in detail in the Appendix A. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This article explores the idea of 'cultural mobility' both as a way of thinking about the polarizing logic of class relations and practices in contemporary society and as a means by which the debate over the cultural omnivore might be advanced. The concept of cultural mobility refers to the differential capacity to engage with or consume cultural goods and services across the entire spectrum of cultural life, an ability which is itself premised upon an unequal, class-related distribution in cultural competence. Cultural mobility, then, is the ability to move at will between cultural realms, a freedom to choose where one is positioned in the cultural landscape. I argue that the concept provides fertile ground for exploring possible interconnections between a number of divergent strands in current social theory which have largely developed independently of each other. At the same time much of this theoretical effort remains divorced from concrete research agendas. Using data collected as part of a major study of Australian cultural consumption, the article provides a case study of cultural mobility and its class moorings which serves to clarify some of the existing confusions concerning the cultural omnivore.
Resumo:
We describe a method by which the decoherence time of a solid-state qubit may be measured. The qubit is coded in the orbital degree of freedom of a single electron bound to a pair of donor impurities in a semiconductor host. The qubit is manipulated by adiabatically varying an external electric field. We show that by measuring the total probability of a successful qubit rotation as a function of the control field parameters, the decoherence rate may be determined. We estimate various system parameters, including the decoherence rates due to electromagnetic fluctuations and acoustic phonons. We find that, for reasonable physical parameters, the experiment is possible with existing technology. In particular, the use of adiabatic control fields implies that the experiment can be performed with control electronics with a time resolution of tens of nanoseconds.
Resumo:
Background There are few population-based data on long-term management of patients after coronary artery bypass graft (CABG), despite the high risk for future major vascular events among this group. We assessed the prevalence and correlates of pharmacotherapy for prevention of new cardiac events in a large population-based series. Methods A postal survey was conducted of 2500 randomly selected survivors from a state population of patients 6 to 20 years after first CABG. Results Response was 82% (n = 2061). Use of antiplatelet agents (80%) and statins (64%) declined as age increased. Other independent predictors of antiplatelet use included statin use (odds ratio [OR] 1.6, 95% CI 1.26-2.05) and recurrent angina (OR 1.6, CI 1.17-2.06). Current smokers were less likely to use aspirin (OR 0.59, CI 0.4-0.89). Statin use was associated with reported high cholesterol (OR 24.4, CI 8.4-32.4), management by a cardiologist (OR 2.3, CI 1.8-3.0), and the use of calcium channel-blockers. Patients reporting hypertension or heart failure, in addition to high cholesterol, were less likely to use statins. Angiotensin-converting enzyme inhibitors were the most commonly prescribed agents for management of hypertension (59%) and were more frequently used among patients with diabetes and those with symptoms of heart failure. Overall 42% of patients were on angiotensin-converting enzyme inhibitors and 36% on beta-blockers. Conclusions Gaps exist in the use of-recommended medications after CABG. Lower anti-platelet and statin use was associated with older age, freedom from angina, comorbid heart failure or hypertension, and not regularly visiting a cardiologist. Patients who continue to smoke might be less likely to adhere to prescribed medications.
Resumo:
Quantum mechanics has been formulated in phase space, with the Wigner function as the representative of the quantum density operator, and classical mechanics has been formulated in Hilbert space, with the Groenewold operator as the representative of the classical Liouville density function. Semiclassical approximations to the quantum evolution of the Wigner function have been defined, enabling the quantum evolution to be approached from a classical starting point. Now analogous semiquantum approximations to the classical evolution of the Groenewold operator are defined, enabling the classical evolution to be approached from a quantum starting point. Simple nonlinear systems with one degree of freedom are considered, whose Hamiltonians are polynomials in the Hamiltonian of the simple harmonic oscillator. The behavior of expectation values of simple observables and of eigenvalues of the Groenewold operator are calculated numerically and compared for the various semiclassical and semiquantum approximations.
Resumo:
We theoretically study the Hilbert space structure of two neighboring P-donor electrons in silicon-based quantum computer architectures. To use electron spins as qubits, a crucial condition is the isolation of the electron spins from their environment, including the electronic orbital degrees of freedom. We provide detailed electronic structure calculations of both the single donor electron wave function and the two-electron pair wave function. We adopted a molecular orbital method for the two-electron problem, forming a basis with the calculated single donor electron orbitals. Our two-electron basis contains many singlet and triplet orbital excited states, in addition to the two simple ground state singlet and triplet orbitals usually used in the Heitler-London approximation to describe the two-electron donor pair wave function. We determined the excitation spectrum of the two-donor system, and study its dependence on strain, lattice position, and interdonor separation. This allows us to determine how isolated the ground state singlet and triplet orbitals are from the rest of the excited state Hilbert space. In addition to calculating the energy spectrum, we are also able to evaluate the exchange coupling between the two donor electrons, and the double occupancy probability that both electrons will reside on the same P donor. These two quantities are very important for logical operations in solid-state quantum computing devices, as a large exchange coupling achieves faster gating times, while the magnitude of the double occupancy probability can affect the error rate.
Resumo:
Background-This study compared the 10-year follow-up of percutaneous coronary intervention (PCI), coronary artery surgery (CABG), and medical treatment (MT) in patients with multivessel coronary artery disease, stable angina, and preserved ventricular function. Methods and Results-The primary end points were overall mortality, Q-wave myocardial infarction, or refractory angina that required revascularization. All data were analyzed according to the intention-to-treat principle. At a single institution, 611 patients were randomly assigned to CABG (n = 203), PCI (n = 205), or MT (n = 203). The 10-year survival rates were 74.9% with CABG, 75.1% with PCI, and 69% with MT (P = 0.089). The 10-year rates of myocardial infarction were 10.3% with CABG, 13.3% with PCI, and 20.7% with MT (P < 0.010). The 10-year rates of additional revascularizations were 7.4% with CABG, 41.9% with PCI, and 39.4% with MT (P < 0.001). Relative to the composite end point, Cox regression analysis showed a higher incidence of primary events in MT than in CABG (hazard ratio 2.35, 95% confidence interval 1.78 to 3.11) and in PCI than in CABG (hazard ratio 1.85, 95% confidence interval 1.39 to 2.47). Furthermore, 10-year rates of freedom from angina were 64% with CABG, 59% with PCI, and 43% with MT (P < 0.001). Conclusions-Compared with CABG, MT was associated with a significantly higher incidence of subsequent myocardial infarction, a higher rate of additional revascularization, a higher incidence of cardiac death, and consequently a 2.29-fold increased risk of combined events. PCI was associated with an increased need for further revascularization, a higher incidence of myocardial infarction, and a 1.46-fold increased risk of combined events compared with CABG. Additionally, CABG was better than MT at eliminating anginal symptoms.