986 resultados para OXIDATION REACTION
Resumo:
Active surveillance for dengue (DEN) virus infected mosquitoes can be an effective way to predict the risk of dengue infection in a given area. However, doing so may pose logistical problems if mosquitoes must be kept alive or frozen fresh to detect DEN virus. In an attempt to simplify mosquito processing, we evaluated the usefulness of a sticky lure and a seminested reverse-transcriptase polymerase chain reaction assay (RT-PCR) for detecting DEN virus RNA under laboratory conditions using experimentally infected Aedes aegypti (L.) mosquitoes. In the first experiment, 40 male mosquitoes were inoculated with 0.13 mul of a 10(4) pfu/ml DEN-2 stock solution. After a 7-d incubation period, the mosquitoes were applied to the sticky lure and kept at room temperatures of 23-30 degreesC. Following 7,10,14, and 28 d application, 10 mosquitoes each were removed from the lure pooled and assayed for virus. DEN virus nucleic acid was clearly detectable in all pools up to 28 d after death. A second study evaluated sensitivity and specificity using one, two, and five DEN-infected mosquitoes removed after 7, 10, 14, 21 and 30 d application and tested by RT-PCR. All four DEN serotypes were individually inoculated in mosquitoes and evaluated using the same procedures as experiment 1. The four serotypes were detectable in as few as one mosquito 30 d after application to the lure with no evidence of cross-reactivity. The combination of sticky lures and RT-PCR show promise for mosquito and dengue virus surveillance and warrant further evaluation.
Resumo:
1. Eight human cytochrome P4501B1 (CYP1B1) allelic variants, namely Arg(48)Ala(119)Leu(432), Arg(48)Ala(119)Val(432), Gly(48)Ala(119)Leu(432), Gly(48)Ala(119)Val(432), Arg(48)Ser(119)Leu(432), Arg(48)Ser(119)Val(432), Gly(48)Ser(119)Leu(432) and Gly(48)Ser(119)Val(432) (all with Asn(453)), were expressed in Escherichia coli together with human NADPH-P450 reductase and their catalytic specificities towards oxidation of 17 beta -oestradiol and benzo[a]pyrene were determined. 2. All of the CYP1B1 variants expressed in bacterial membranes showed Fe2+. CO versus Fe2+ difference spectra with wavelength maxima at 446 nm and they reacted with antibodies raised against recombinant human CYP1B1 in immunoblots. The ratio of expression of the reductase to CYP1B1 in these eight preparations ranged from 0.2 to 0.5. 3. CYP1B1 Arg(48) variants tended to have higher activities for 17 beta -oestradiol 4-hydroxylation than Gly(48) variants, although there were no significant variations in 17 beta -oestradiol 2-hydroxylation activity in these eight CYP1B1 variants. Interestingly, ratios of formation of 17 beta -oestradiol 4-hydroxylation to 2-hydroxylation by these CYP1B1 variants were higher in all of the Val(432) forms than the corresponding Leu(432) forms. 4. In contrast, Leu(432) forms of CYP1B1 showed higher rates of oxidation of benzo[a]pyrene (to the 7, 8-dihydoxy-7,8-dihydrodiol in the presence of epoxide hydrolase) than did the Val(432) forms. 5. These results suggest that polymorphic human CYP1B1 variants may cause some altered catalytic specificity with 17 beta -oestradiol and benzo[a]pyrene and may influence susceptibilities of individuals towards endogenous and exogenous carcinogens.
Resumo:
Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) catalyzes the first step in branched-chain amino acid biosynthesis. The enzyme requires thiamin diphosphate and FAD for activity, but the latter is unexpected, because the reaction involves no oxidation or reduction. Due to its presence in plants, AHAS is a target for sulfonylurea and imidazolinone herbicides. Here, the crystal structure to 2.6 A resolution of the catalytic subunit of yeast AHAS is reported. The active site is located at the dimer interface and is near the proposed herbicide-binding site. The conformation of FAD and its position in the active site are defined. The structure of AHAS provides a starting point for the rational design of new herbicides. (C) 2002 Elsevier Science Ltd.
Resumo:
Reaction between 5-(4-amino-2-thiabutyl)-5-methyl-3,7-dithianonane-1, 9-diamine (N3S3) and 5- methyl-2,2-bipyridine-5-carbaldehyde and subsequent reduction of the resulting imine with sodium borohydride results in a potentially ditopic ligand (L). Treatment of L with one equivalent of an iron( II) salt led to the monoprotonated complex [Fe(HL)](3+), isolated as the hexafluorophosphate salt. The presence of characteristic bands for the tris( bipyridyl) iron( II) chromophore in the UV/vis spectrum indicated that the iron( II) atom is coordinated octahedrally by the three bipyridyl (bipy) groups. The [Fe( bipy) 3] moiety encloses a cavity composed of the N3S3 portion of the ditopic ligand. The mononuclear and monomeric nature of the complex [Fe(HL)](3+) has been established also by accurate mass analysis. [Fe(HL)](3+) displays reduced stability to base compared with the complex [Fe(bipy)(3)](2+). In aqueous solution [Fe(HL)](3+) exhibits irreversible electrochemical behaviour with an oxidation wave ca. 60 mV to more positive potential than [Fe(bipy)(3)](2+). Investigations of the interaction of [Fe(L)](2+) with copper( II), iron( II), and mercury( II) using mass spectroscopic and potentiometric methods suggested that where complexation occurred, fewer than six of the N3S3 cavity donors were involved. The high affinity of the complex [Fe(L)](2+) for protons is one reason suggested to contribute to the reluctance to coordinate a second metal ion.
Propagation of nonstationary curved and stretched premixed flames with multistep reaction mechanisms
Resumo:
The propagation speed of a thin premixed flame disturbed by an unsteady fluid flow of a larger scale is considered. The flame may also have a general shape but the reaction zone is assumed to be thin compared to the flame thickness. Unlike in preceding publications, the presented asymptotic analysis is performed for a general multistep reaction mechanism and, at the same time, the flame front is curved by the fluid flow. The resulting equations define the propagation speed of disturbed flames in terms of the properties of undisturbed planar flames and the flame stretch. Special attention is paid to the near-equidiffusion limit. In this case, the flame propagation speed is shown to depend on the effective Zeldovich number Z(f) , and the flame stretch. Unlike the conventional Zeldovich number, the effective Zeldovich number is not necessarily linked directly to the activation energies of the reactions. Several examples of determining the effective Zeldovich number for reduced combustion mechanisms are given while, for realistic reactions, the effective Zeldovich number is determined from experiments. Another feature of the present approach is represented by the relatively simple asymptotic technique based on the adaptive generalized curvilinear system of coordinates attached to the flame (i.e., intrinsic disturbed flame equations [IDFE]).
Resumo:
Improvements to the routine methods for the determination of actual acidity in suspension for acid sulfate soils (ASS) are introduced. The titratable sulfidic acidity (TSA) results using an improved peroxide-based method were compared with the theoretical acidity predicted by the chromium reducible sulfur method for 9 acid sulfate soils. The regression between these 2 measures of sulfidic acidity was highly significant, the slope of the regression line not significantly different from unity (P = 0.05) and the intercept not significantly different from zero. This contrasts with results of other workers using earlier peroxide oxidation methods, where TSA substantially underestimated the theoretical acidity predicted by reduced inorganic sulfur analysis. Comparison was made between the 2 principal measurements from the improved peroxide method (TSA and S-POS), with S-POS converted to theoretical sulfidic acidity to allow comparison. The relationship between these 2 measurements was highly significant. The effects of titration in suspension, as well as raising titration end points to pH 6.5, were investigated, principally with respect to the titratable actual acidity (TAA) result. TAA results obtained by KCl extraction were compared with those obtained using BaCl2, MgCl2, and water extraction. TAA in 1 M KCl suspensions titrated to pH 6.5 agreed well with titratable actual acidity measured using the 25-h extraction approach of the Lin et al. (2000a) BaCl2 method. Both BaCl2 and KCl solutions were ineffective at fully recovering acidity from synthetic jarosite without repeated extraction and titration. The application of correction factors for the estimation of total actual acidity in ASS is not supported by the results of this investigation. Acid sulfate soils that contain substantial quantities of jarosite or other acid-producing but relatively insoluble sulfate minerals continue to prove problematic to chemically analyse; however, an approach for estimating this component is discussed.
Resumo:
Improvements to peroxide oxidation methods for analysing acid sulfate soils (ASS) are introduced. The soil solution ratio has been increased to 1 : 40, titrations are performed in suspension, and the duration of the peroxide digest stage is substantially shortened. For 9 acid sulfate soils, the peroxide oxidisable sulfur value obtained using the improved method was compared with the reduced inorganic sulfur result obtained using the chromium reducible sulfur method. Their regression was highly significant, the slope of the regression line was not significantly different (P = 0.05) from unity, and the intercept not significantly different from zero. A complete sulfur budget for the improved method showed there was no loss of sulfur as has been reported for earlier peroxide oxidation techniques. When soils were very finely ground, efficient oxidation of sulfides was achieved, despite the milder digestion conditions. Highly sulfidic and organic soils were shown to be the most difficult to analyse using either the improved method or the chromium method. No single analytical method can be universally applied to all ASS, rather a suite of methods is necessary for a thorough understanding of many ASS. The improved peroxide method, in combination with the chromium method and the 4 M HCl extraction, form a sound platform for informed decision making on the management of acid sulfate soils.
Resumo:
The conditions under which blink startle facilitation can be found in anticipation of a reaction time task were investigated to resolve inconsistent findings across previous studies. Four groups of participants (n = 64) were presented with two visual stimuli, one predicting a reaction time task (S+) and the second presented alone (S-). Participants were asked to make a speeded response to the offset of the S+ (S1 paradigm) or were asked to respond to a tactile stimulus presented at the offset of the S+ (S1-S2 paradigm). Half of the participants in each paradigm condition received performance feedback. Overall, blink latency shortening and magnitude facilitation were larger during S+ than during S-. More detailed analyses, however, found these differences to be reliable only in the Feedback conditions. Ratings of S+ pleasantness did not change across the experiment. Electrodermal responses to S+ were larger than to S- in all groups with differential electrodermal responding emerging earlier in the S1 paradigm. Taken together, the data support the notion that startle facilitation can occur during non-aversive Pavlovian conditioning. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
An efficient Lanczos subspace method has been devised for calculating state-to-state reaction probabilities. The method recasts the time-independent wave packet Lippmann-Schwinger equation [Kouri , Chem. Phys. Lett. 203, 166 (1993)] inside a tridiagonal (Lanczos) representation in which action of the causal Green's operator is affected easily with a QR algorithm. The method is designed to yield all state-to-state reaction probabilities from a given reactant-channel wave packet using a single Lanczos subspace; the spectral properties of the tridiagonal Hamiltonian allow calculations to be undertaken at arbitrary energies within the spectral range of the initial wave packet. The method is applied to a H+O-2 system (J=0), and the results indicate the approach is accurate and stable. (C) 2002 American Institute of Physics.
Resumo:
Complex chemical reactions in the gas phase can be decomposed into a network of elementary (e.g., unimolecular and bimolecular) steps which may involve multiple reactant channels, multiple intermediates, and multiple products. The modeling of such reactions involves describing the molecular species and their transformation by reaction at a detailed level. Here we focus on a detailed modeling of the C(P-3)+allene (C3H4) reaction, for which molecular beam experiments and theoretical calculations have previously been performed. In our previous calculations, product branching ratios for a nonrotating isomerizing unimolecular system were predicted. We extend the previous calculations to predict absolute unimolecular rate coefficients and branching ratios using microcanonical variational transition state theory (mu-VTST) with full energy and angular momentum resolution. Our calculation of the initial capture rate is facilitated by systematic ab initio potential energy surface calculations that describe the interaction potential between carbon and allene as a function of the angle of attack. Furthermore, the chemical kinetic scheme is enhanced to explicitly treat the entrance channels in terms of a predicted overall input flux and also to allow for the possibility of redissociation via the entrance channels. Thus, the computation of total bimolecular reaction rates and partial capture rates is now possible. (C) 2002 American Institute of Physics.
Resumo:
Dimethyl sulphide dehydrogenase catalyses the oxidation of dimethyl sulphide to dimethyl sulphoxide (DMSO) during photoautotrophic growth of Rhodovulum sulfidophilum . Dimethyl sulphide dehydrogenase was shown to contain bis (molybdopterin guanine dinucleotide)Mo, the form of the pterin molybdenum cofactor unique to enzymes of the DMSO reductase family. Sequence analysis of the ddh gene cluster showed that the ddhA gene encodes a polypeptide with highest sequence similarity to the molybdop-terin-containing subunits of selenate reductase, ethylbenzene dehydrogenase. These polypeptides form a distinct clade within the DMSO reductase family. Further sequence analysis of the ddh gene cluster identified three genes, ddhB , ddhD and ddhC . DdhB showed sequence homology to NarH, suggesting that it contains multiple iron-sulphur clusters. Analysis of the N-terminal signal sequence of DdhA suggests that it is secreted via the Tat secretory system in complex with DdhB, whereas DdhC is probably secreted via a Sec-dependent mechanism. Analysis of a ddhA mutant showed that dimethyl sulphide dehydrogenase was essential for photolithotrophic growth of Rv. sulfidophilum on dimethyl sulphide but not for chemo-trophic growth on the same substrate. Mutational analysis showed that cytochrome c (2) mediated photosynthetic electron transfer from dimethyl sulphide dehydrogenase to the photochemical reaction centre, although this cytochrome was not essential for photoheterotrophic growth of the bacterium.
Resumo:
The study of viral-based processes is hampered by (a) their complex, transient nature, (b) the instability of products, and (c) the lack of accurate diagnostic assays. Here, we describe the use of real-time quantitative polymerase chain reaction to characterize baculoviral infection. Baculovirus DNA content doubles every 1.7 h from 6 h post-infection until replication is halted at the onset of budding. No dynamic equilibrium exists between replication and release, and the kinetics are independent of the cell density at the time of infection. No more than 16% of the intracellular virus copies bud from the cell. (C) 2002 John Wiley & Sons, Inc. Biotechnol Bioeng 77: 476-480, 2002; DOI 10.1002/bit.10126.
Resumo:
Carbon gasification with steam to produce H-2 and CO is an important reaction widely used in industry for hydrogen generation. Although the literature is vast, the. mechanism for the formation of H-2 is still unclear. In particular, little has, been done to investigate the potential of molecular orbital theory to distinguish different mechanism possibilities. In this work, we used molecular orbital theory to demonstrate a favorable energetic pathway where H2O is first physically adsorbed on the virgin graphite surface with negligible change in molecular structure. Chemisorption occurs via O approaching the carbon edge site with one H atom stretching away from the O in the transition state. This is followed by a local minimum. state in which the stretching H is further disconnected from the O atoms and the remaining OH group is still on the carbon edge site. The disconnected H then pivot around the OH group to bond with the H of the OH group and forms H-2. The O atom remaining on the carbon edge site is subsequently desorbed as CO. The reverse occurs when H-2 reacts with the surface oxygen to produce H2O.