985 resultados para ORLANDO FURIOSO
Resumo:
13 hojas.
Resumo:
62 hojas : ilustraciones.
Resumo:
47 hojas : ilustraciones.
Resumo:
55 hojas : ilustraciones.
Resumo:
21 hojas : ilustraciones.
Resumo:
56 hojas : ilustraciones.
Resumo:
Poster is based on the following paper: C. Kwan and M. Betke. Camera Canvas: Image editing software for people with disabilities. In Proceedings of the 14th International Conference on Human Computer Interaction (HCI International 2011), Orlando, Florida, July 2011.
Resumo:
BACKGROUND: Biological processes occur on a vast range of time scales, and many of them occur concurrently. As a result, system-wide measurements of gene expression have the potential to capture many of these processes simultaneously. The challenge however, is to separate these processes and time scales in the data. In many cases the number of processes and their time scales is unknown. This issue is particularly relevant to developmental biologists, who are interested in processes such as growth, segmentation and differentiation, which can all take place simultaneously, but on different time scales. RESULTS: We introduce a flexible and statistically rigorous method for detecting different time scales in time-series gene expression data, by identifying expression patterns that are temporally shifted between replicate datasets. We apply our approach to a Saccharomyces cerevisiae cell-cycle dataset and an Arabidopsis thaliana root developmental dataset. In both datasets our method successfully detects processes operating on several different time scales. Furthermore we show that many of these time scales can be associated with particular biological functions. CONCLUSIONS: The spatiotemporal modules identified by our method suggest the presence of multiple biological processes, acting at distinct time scales in both the Arabidopsis root and yeast. Using similar large-scale expression datasets, the identification of biological processes acting at multiple time scales in many organisms is now possible.
Resumo:
BACKGROUND: Diagnostic imaging represents the fastest growing segment of costs in the US health system. This study investigated the cost-effectiveness of alternative diagnostic approaches to meniscus tears of the knee, a highly prevalent disease that traditionally relies on MRI as part of the diagnostic strategy. PURPOSE: To identify the most efficient strategy for the diagnosis of meniscus tears. STUDY DESIGN: Economic and decision analysis; Level of evidence, 1. METHODS: A simple-decision model run as a cost-utility analysis was constructed to assess the value added by MRI in various combinations with patient history and physical examination (H&P). The model examined traumatic and degenerative tears in 2 distinct settings: primary care and orthopaedic sports medicine clinic. Strategies were compared using the incremental cost-effectiveness ratio (ICER). RESULTS: In both practice settings, H&P alone was widely preferred for degenerative meniscus tears. Performing MRI to confirm a positive H&P was preferred for traumatic tears in both practice settings, with a willingness to pay of less than US$50,000 per quality-adjusted life-year. Performing an MRI for all patients was not preferred in any reasonable clinical scenario. The prevalence of a meniscus tear in a clinician's patient population was influential. For traumatic tears, MRI to confirm a positive H&P was preferred when prevalence was less than 46.7%, with H&P preferred above that. For degenerative tears, H&P was preferred until the prevalence reaches 74.2%, and then MRI to confirm a negative was the preferred strategy. In both settings, MRI to confirm positive physical examination led to more than a 10-fold lower rate of unnecessary surgeries than did any other strategy, while MRI to confirm negative physical examination led to a 2.08 and 2.26 higher rate than H&P alone in primary care and orthopaedic clinics, respectively. CONCLUSION: For all practitioners, H&P is the preferred strategy for the suspected degenerative meniscus tear. An MRI to confirm a positive H&P is preferred for traumatic tears for all practitioners. Consideration should be given to implementing alternative diagnostic strategies as well as enhancing provider education in physical examination skills to improve the reliability of H&P as a diagnostic test. CLINICAL RELEVANCE: Alternative diagnostic strategies that do not include the use of MRI may result in decreased health care costs without harm to the patient and could possibly reduce unnecessary procedures.
Resumo:
BACKGROUND: Risk assessment with a thorough family health history is recommended by numerous organizations and is now a required component of the annual physical for Medicare beneficiaries under the Affordable Care Act. However, there are several barriers to incorporating robust risk assessments into routine care. MeTree, a web-based patient-facing health risk assessment tool, was developed with the aim of overcoming these barriers. In order to better understand what factors will be instrumental for broader adoption of risk assessment programs like MeTree in clinical settings, we obtained funding to perform a type III hybrid implementation-effectiveness study in primary care clinics at five diverse healthcare systems. Here, we describe the study's protocol. METHODS/DESIGN: MeTree collects personal medical information and a three-generation family health history from patients on 98 conditions. Using algorithms built entirely from current clinical guidelines, it provides clinical decision support to providers and patients on 30 conditions. All adult patients with an upcoming well-visit appointment at one of the 20 intervention clinics are eligible to participate. Patient-oriented risk reports are provided in real time. Provider-oriented risk reports are uploaded to the electronic medical record for review at the time of the appointment. Implementation outcomes are enrollment rate of clinics, providers, and patients (enrolled vs approached) and their representativeness compared to the underlying population. Primary effectiveness outcomes are the percent of participants newly identified as being at increased risk for one of the clinical decision support conditions and the percent with appropriate risk-based screening. Secondary outcomes include percent change in those meeting goals for a healthy lifestyle (diet, exercise, and smoking). Outcomes are measured through electronic medical record data abstraction, patient surveys, and surveys/qualitative interviews of clinical staff. DISCUSSION: This study evaluates factors that are critical to successful implementation of a web-based risk assessment tool into routine clinical care in a variety of healthcare settings. The result will identify resource needs and potential barriers and solutions to implementation in each setting as well as an understanding potential effectiveness. TRIAL REGISTRATION: NCT01956773.
Resumo:
Copyright © Taylor & Francis Group, LLC 2015.Type 2 diabetes is a major health burden in the United States, and population trends suggest this burden will increase. High interest in, and increased availability of, testing for genetic risk of type 2 diabetes presents a new opportunity for reducing type 2 diabetes risk for many patients; however, to date, there is little evidence that genetic testing positively affects type 2 diabetes prevention. Genetic information may not fit patients illness representations, which may reduce the chances of risk-reducing behavior changes. The present study aimed to examine illness representations in a clinical sample who are at risk for type 2 diabetes and interested in genetic testing. The authors used the Common Sense Model to analyze survey responses of 409 patients with type 2 diabetes risk factors. Patients were interested in genetic testing for type 2 diabetes risk and believed in its importance. Most patients believed that genetic factors are important to developing type 2 diabetes (67%), that diet and exercise are effective in preventing type 2 diabetes (95%), and that lifestyle changes are more effective than drugs (86%). Belief in genetic causality was not related to poorer self-reported health behaviors. These results suggest that patients interest in genetic testing for type 2 diabetes might produce a teachable moment that clinicians can use to counsel behavior change.
Resumo:
BACKGROUND: Patients, clinicians, researchers and payers are seeking to understand the value of using genomic information (as reflected by genotyping, sequencing, family history or other data) to inform clinical decision-making. However, challenges exist to widespread clinical implementation of genomic medicine, a prerequisite for developing evidence of its real-world utility. METHODS: To address these challenges, the National Institutes of Health-funded IGNITE (Implementing GeNomics In pracTicE; www.ignite-genomics.org ) Network, comprised of six projects and a coordinating center, was established in 2013 to support the development, investigation and dissemination of genomic medicine practice models that seamlessly integrate genomic data into the electronic health record and that deploy tools for point of care decision making. IGNITE site projects are aligned in their purpose of testing these models, but individual projects vary in scope and design, including exploring genetic markers for disease risk prediction and prevention, developing tools for using family history data, incorporating pharmacogenomic data into clinical care, refining disease diagnosis using sequence-based mutation discovery, and creating novel educational approaches. RESULTS: This paper describes the IGNITE Network and member projects, including network structure, collaborative initiatives, clinical decision support strategies, methods for return of genomic test results, and educational initiatives for patients and providers. Clinical and outcomes data from individual sites and network-wide projects are anticipated to begin being published over the next few years. CONCLUSIONS: The IGNITE Network is an innovative series of projects and pilot demonstrations aiming to enhance translation of validated actionable genomic information into clinical settings and develop and use measures of outcome in response to genome-based clinical interventions using a pragmatic framework to provide early data and proofs of concept on the utility of these interventions. Through these efforts and collaboration with other stakeholders, IGNITE is poised to have a significant impact on the acceleration of genomic information into medical practice.
Resumo:
PURPOSE: Risk-stratified guidelines can improve quality of care and cost-effectiveness, but their uptake in primary care has been limited. MeTree, a Web-based, patient-facing risk-assessment and clinical decision support tool, is designed to facilitate uptake of risk-stratified guidelines. METHODS: A hybrid implementation-effectiveness trial of three clinics (two intervention, one control). PARTICIPANTS: consentable nonadopted adults with upcoming appointments. PRIMARY OUTCOME: agreement between patient risk level and risk management for those meeting evidence-based criteria for increased-risk risk-management strategies (increased risk) and those who do not (average risk) before MeTree and after. MEASURES: chart abstraction was used to identify risk management related to colon, breast, and ovarian cancer, hereditary cancer, and thrombosis. RESULTS: Participants = 488, female = 284 (58.2%), white = 411 (85.7%), mean age = 58.7 (SD = 12.3). Agreement between risk management and risk level for all conditions for each participant, except for colon cancer, which was limited to those <50 years of age, was (i) 1.1% (N = 2/174) for the increased-risk group before MeTree and 16.1% (N = 28/174) after and (ii) 99.2% (N = 2,125/2,142) for the average-risk group before MeTree and 99.5% (N = 2,131/2,142) after. Of those receiving increased-risk risk-management strategies at baseline, 10.5% (N = 2/19) met criteria for increased risk. After MeTree, 80.7% (N = 46/57) met criteria. CONCLUSION: MeTree integration into primary care can improve uptake of risk-stratified guidelines and potentially reduce "overuse" and "underuse" of increased-risk services.Genet Med 18 10, 1020-1028.
Resumo:
The Mongolian gazelle, Procapra gutturosa, resides in the immense and dynamic ecosystem of the Eastern Mongolian Steppe. The Mongolian Steppe ecosystem dynamics, including vegetation availability, change rapidly and dramatically due to unpredictable precipitation patterns. The Mongolian gazelle has adapted to this unpredictable vegetation availability by making long range nomadic movements. However, predicting these movements is challenging and requires a complex model. An accurate model of gazelle movements is needed, as rampant habitat fragmentation due to human development projects - which inhibit gazelles from obtaining essential resources - increasingly threaten this nomadic species. We created a novel model using an Individual-based Neural Network Genetic Algorithm (ING) to predict how habitat fragmentation affects animal movement, using the Mongolian Steppe as a model ecosystem. We used Global Positioning System (GPS) collar data from real gazelles to “train” our model to emulate characteristic patterns of Mongolian gazelle movement behavior. These patterns are: preferred vegetation resources (NDVI), displacement over certain time lags, and proximity to human areas. With this trained model, we then explored how potential scenarios of habitat fragmentation may affect gazelle movement. This model can be used to predict how fragmentation of the Mongolian Steppe may affect the Mongolian gazelle. In addition, this model is novel in that it can be applied to other ecological scenarios, since we designed it in modules that are easily interchanged.
Resumo:
info:eu-repo/semantics/nonPublished