901 resultados para Nucleic acid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have used an in vitro selection procedure called crosslinking SELEX (SELEX = systematic evolution of ligands by exponential enrichment) to identify RNA sequences that bind with high affinity and crosslink to the Rev protein from human immunodeficiency virus type 1 (HIV-1). A randomized RNA library substituted with the photoreactive chromophore 5-iodouracil was irradiated with monochromatic UV light in the presence of Rev. Those sequences with the ability to photocrosslink to Rev were partitioned from the rest of the RNA pool, amplified, and used for the next round of selection. Rounds of photocrosslinking selection were alternated with rounds of selection for RNA sequences with high affinity to Rev. This iterative, dual-selection method yielded RNA molecules with subnanomolar dissociation constants and high efficiency photocrosslinking to Rev. Some of the RNA molecules isolated by this procedure form a stable complex with Rev that is resistant to denaturing gel electrophoresis in the absence of UV irradiation. In vitro selection of nucleic acids by using modified nucleotides allows the isolation of nucleic acid molecules with potentially limitless chemical capacities to covalently attack a target molecule.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have analyzed differential gene expression in normal versus jun-transformed avian fibroblasts by using subtracted nucleic acid probes and differential nucleic acid hybridization techniques for the isolation of cDNA clones. One clone corresponded to a gene that was strongly expressed in a previously established quail (Coturnix japonica) embryo fibroblast line (VCD) transformed by a chimeric jun oncogene but whose expression was undetectable in normal quail embryo fibroblasts. Furthermore, the gene was expressed in quail or chicken fibroblast cultures that were freshly transformed by retroviral constructs carrying various viral or cellular jun alleles and in chicken fibroblasts transformed by the avian retrovirus ASV17 carrying the original viral v-jun allele. However, its expression was undetectable in a variety of established avian cell lines or freshly prepared avian fibroblast cultures transformed by other oncogenes or a chemical carcinogen. The nucleotide and deduced amino acid sequences of the cDNA clone were not identical to any sequence entries in the data bases but revealed significant similarities to avian beta-keratin genes; the highest degree of amino acid sequence identity was 63%. The gene, which we termed bkj, may represent a direct or indirect target for jun function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The absorption and metabolism of dietary nucleic acids have received less attention than those of other organic nutrients, largely because of methodological difficulties. We supplemented the rations of poultry and mice with the edible alga Spirulina platensis, which had been uniformly labeled with 13C by hydroponic culture in 13CO2. The rations were ingested by a hen for 4 wk and by four mice for 6 days; two mice were fed a normal diet and two were fed a nucleic acid-deficient diet. The animals were killed and nucleosides were isolated from hepatic RNA. The isotopic enrichment of all mass isotopomers of the nucleosides was analyzed by selected ion monitoring of the negative chemical ionization mass spectrum and the labeling pattern was deconvoluted by reference to the enrichment pattern of the tracer material. We found a distinct difference in the 13C enrichment pattern between pyrimidine and purine nucleosides; the isotopic enrichment of uniformly labeled [M + 9] isotopomers of pyrimidines exceeded that of purines [M + 10] by > 2 orders of magnitude in the avian nucleic acids and by 7- and 14-fold in the murine nucleic acids. The purines were more enriched in lower mass isotopomers, those less than [M + 3], than the pyrimidines. Our results suggest that large quantities of dietary pyrimidine nucleosides and almost no dietary purine nucleosides are incorporated into hepatic nucleic acids without hydrolytic removal of the ribose moiety. In addition, our results support a potential nutritional role for nucleosides and suggest that pyrimidines are conditionally essential organic nutrients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intrinsic termination of transcription in Escherichia coli involves the formation of an RNA hairpin in the nascent RNA. This hairpin plays a central role in the release of the transcript and polymerase at intrinsic termination sites on the DNA template. We have created variants of the lambda tR2 terminator hairpin and examined the relationship between the structure and stability of this hairpin and the template positions and efficiencies of termination. The results were used to test the simple nucleic acid destabilization model of Yager and von Hippel and showed that this model must be modified to provide a distinct role for the rU-rich sequence in the nascent RNA, since a perfect palindromic sequence that is sufficiently long to form an RNA hairpin that could destabilize the entire putative 12-bp RNA-DNA hybrid does not trigger termination at the expected positions. Rather, our results show that both a stable terminator hairpin and the run of 6-8 rU residues that immediately follows are required for effective intrinsic termination and that termination occurs at specific and invariant template positions relative to these two components. Possible structural or kinetic modifications of the simple model are proposed in the light of these findings and of recent results implicating "inchworming" and possible conformational heterogeneity of transcription complexes in intrinsic termination. Thus, these findings argue that the structure and dimensions of the hairpin are important determinants of the termination-elongation decision and suggest that a complete mechanism is likely to involve specific interactions of the polymerase, the RNA terminator hairpin, and, perhaps, the dT-rich template sequence that codes for the run of rU residues at the 3' end of the nascent transcript.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In response to infection by Rhizobium, highly differentiated organs called nodules form on legume roots. Within these organs, the symbiotic association between the host plant and bacteria is established. A putative plant transcription factor, NMH7, has been identified in alfalfa root nodules. nmh7 contains a MADS-box DNA-binding region and shows homology to flower homeotic genes. This gene is a member of a multigene family in alfalfa and was identified on the basis of nucleic acid homology to plant regulatory protein genes (MADS-box-containing genes) from Antirrhinum and Arabidopsis. RNA analysis and in situ hybridization showed that expression of this class of regulatory genes is limited to the infected cells of alfalfa root nodules and is likely to be involved in the signal transduction pathway initiated by the bacterial symbiont, Rhizobium meliloti. The expression of nmh7 in a root-derived organ is unusual for this class of regulatory genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several models have been proposed for the infectious agents that cause human Creutzfeldt-Jakob disease (CJD) and sheep scrapie. Purified proteins and extracted nucleic acids are not infectious. To further identify the critical molecular components of the CJD agent, 120S infectious material with reduced prion protein (PrP) was treated with guanidine hydrochloride or SDS. Particulate and soluble components were then separated by centrifugation and molecularly characterized. Conditions that optimally solubilized residual PrP and/or nucleic acid-protein complexes were used to produce subfractions that were assayed for infectivity. All controls retained > 90% of the 120S titer (approximately 15% of that in total brain) but lost > 99.5% of their infectivity after heat-SDS treatment (unlike scrapie fractions enriched for PrP). Exposure to 1% SDS at 22 degrees C produced particulate nucleic acid-protein complexes that were almost devoid of host PrP. These sedimenting complexes were as infectious as the controls. In contrast, when such complexes were solubilized with 2.5 M guanidine hydrochloride, the infectious titer was reduced by > 99.5%. Sedimenting PrP aggregates with little nucleic acid and no detectable nucleic acid-binding proteins had negligible infectivity, as did soluble but multimeric forms of PrP. These data strongly implicate a classical viral structure, possibly with no intrinsic PrP, as the CJD infectious agent. CJD-specific protective nucleic acid-binding protein(s) have already been identified in 120S preparations, and preliminary subtraction studies have revealed several CJD-specific nucleic acids. Such viral candidates deserve more attention, as they may be of use in preventing iatrogenic CJD and in solving a fundamental mystery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An approach was developed for the isolation and characterization of soybean plasma membrane-associated proteins by immunoscreening of a cDNA expression library. An antiserum was raised against purified plasma membrane vesicles. In a differential screening of approximately 500,000 plaque-forming units with the anti-(plasma membrane) serum and DNA probes derived from highly abundant clones isolated in a preliminary screening, 261 clones were selected from approximately 1,200 antiserum-positive plaques. These clones were classified into 40 groups by hybridization analysis and 5'- and 3'-terminal sequencing. By searching nucleic acid and protein sequence data bases, 11 groups of cDNAs were identified, among which valosin-containing protein (VCP), clathrin heavy chain, phospholipase C, and S-adenosylmethionine:delta 24-sterol-C-methyltransferase have not to date been cloned from plants. The remaining 29 groups did not match any current data base entries and may, therefore, represent additional or yet uncharacterized genes. A full-length cDNA encoding the soybean VCP was sequenced. The high level of amino acid identity with vertebrate VCP and yeast CDC48 protein indicates that the soybean protein is a plant homolog of vertebrate VCP and yeast CDC48 protein.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A model based on the nonlinear Poisson-Boltzmann equation is used to study the electrostatic contribution to the binding free energy of a simple intercalating ligand, 3,8-diamino-6-phenylphenanthridine, to DNA. We find that the nonlinear Poisson-Boltzmann model accurately describes both the absolute magnitude of the pKa shift of 3,8-diamino-6-phenylphenanthridine observed upon intercalation and its variation with bulk salt concentration. Since the pKa shift is directly related to the total electrostatic binding free energy of the charged and neutral forms of the ligand, the accuracy of the calculations implies that the electrostatic contributions to binding are accurately predicted as well. Based on our results, we have developed a general physical description of the electrostatic contribution to ligand-DNA binding in which the electrostatic binding free energy is described as a balance between the coulombic attraction of a ligand to DNA and the disruption of solvent upon binding. Long-range coulombic forces associated with highly charged nucleic acids provide a strong driving force for the interaction of cationic ligands with DNA. These favorable electrostatic interactions are, however, largely compensated for by unfavorable changes in the solvation of both the ligand and the DNA upon binding. The formation of a ligand-DNA complex removes both charged and polar groups at the binding interface from pure solvent while it displaces salt from around the nucleic acid. As a result, the total electrostatic binding free energy is quite small. Consequently, nonpolar interactions, such as tight packing and hydrophobic forces, must play a significant role in ligand-DNA stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Smooth muscle cell (SMC) proliferation is thought to play a major role in vascular restenosis after angioplasty and is a serious complication of the procedure. Developing antisense (AS) oligonucleotides as therapeutics is attractive because of the potentially high specificity of binding to their targets, and several investigators have reported inhibition of SMC proliferation in vitro and in vivo by using AS strategies. We report here the results of our experiments on vascular SMCs using AS oligonucleotides directed toward c-myb and c-myc. We found that significant inhibition of SMC proliferation occurred with these specific AS sequences but that this inhibition was clearly not via a hybridization-dependent AS mechanism. Rather, inhibition was due to the presence of four contiguous guanosine residues in the oligonucleotide sequence. This was demonstrated in vitro in primary cultures of SMCs and in arteries ex vivo. The ex vivo model developed here provides a rapid and effective system in which to screen potential oligonucleotide drugs for restenosis. We have further explored the sequence requirements of this non-AS effect and determined that phosphorothioate oligonucleotides containing at least two sets of three or four consecutive guanosine residues inhibit SMC proliferation in vitro and ex vivo. These results suggest that previous AS data obtained using these and similar, contiguous guanosine-containing AS sequences be reevaluated and that there may be an additional class of nucleic acid compounds that have potential as antirestenosis therapeutics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo deste trabalho é apresentar uma técnica automática baseada em morfologia matemática para medida de sinal em imagens de cDNA desenvolvida no BIOINFO,em parceria com o Instituto Ludwig de Pesquisa contra o Câncer. A tecnologia de lâminas de cDNA é um processo baseado em hibridização que possibilita observar a concentração relativa de mRNA de amostras de tecidos analisando a luminosidade de sinais fluorescentes ou radioativos. Hibridização é o processo bioquímico onde duas fitas de ácido nucleico com seqüências complementares se combinam. A técnica apresentada permite o cálculo da expressão gênica com alto grau de automação, podendo o usuário corrigir com facilidade eventuais erros de segmentação. O usuário interage com o programa apenas para selecionar as imagens e inserir os dados de geometria da lâmina. A estratégia de solução usada tem três fases: gradeamento dos blocos, gradeamento dos spots e segmentação dos spots. Todas as fases utilizam filtros morfológicos e as fases de gradeamento possuem um passo final de correção baseado nos dados de geometria da lâmina o que aumenta a robustez do processo, que funciona bem mesmo em imagens ruidosas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En Argentina, en consonancia con el resto del mundo, la Nanotecnología es considerada un área estratégica. Sin embargo, las investigaciones en Nanobiotecnología todavía constituyen un área de vacancia. El uso de nanomateriales para desarrollar plataformas bioanalíticas que permitan la construcción de biosensores ofrece múltiples ventajas y una promisoria perspectiva de aplicación en diversas áreas. En la actualidad, los laboratorios de análisis clínicos, la industria farmacéutica y alimentaria, y los laboratorios de control bromatológico y ambiental requieren de metodologías analíticas que proporcionen resultados exactos, reproducibles, rápidos, sensibles y selectivos empleando pequeños volúmenes de muestra, con un mínimo consumo de reactivos y una producción de deshechos limpia y escasa. Las investigaciones en nanobiosensores se encuentran dirigidas hacia el logro de estas metas. Uno de los grandes desafíos es lograr biosensores miniaturizados con potencialidad para el desarrollo de dispositivos de medición descentralizada (“point of care”) y la detección simultánea de multianalitos. Aún cuando se han hecho innumerables desarrollos en los casi 50 años de vida de los biosensores, todavía hay numerosos interrogantes por dilucidar. La modificación con nanomateriales juega un rol preponderante en los transductores tanto en los electroquímicos como en los plasmónicos. El uso de películas delgadas de Au para SPR modificadas con grafeno u óxido de grafeno, es un campo de una enorme potencialidad y sin embargo es muy poco explotado, por lo que reviste gran importancia. En lo referido a la capa de biorreconocimiento, se trabajará con moléculas capaces de establecer interacciones de bioafinidad, como los anticuerpos y también moléculas que son muy poco usadas en nuestro país y en Latinoamérica como ADN, aptámeros, PNA y lectinas. RESUMEN: El Objetivo general de este proyecto es desarrollar nuevas plataformas bioanalíticas para la detección de diferentes eventos de bioafinidad a partir de la integración de transductores electroquímicos (EQ) y plasmónicos con materiales nanoestructurados (nanotubos de carbono, nanoláminas de grafeno, nanoalambres metálicos); biomoléculas (ADN, “peptide nucleic acid” (PNA), aptámeros, anticuerpos, lectinas) y polímeros funcionalizados con moléculas bioactivas. Las arquitecturas supramoleculares resultantes estarán dirigidas al desarrollo de biosensores EQ y plasmónicos para la cuantificación de biomarcadores de relevancia clínica y medioambiental. Se funcionalizarán CNT, grafeno, óxido de grafeno, nanoalambres metálicos empleando homopéptidos y proteínas con alta afinidad por cationes metálicos, los que se integrarán a transductores de carbono y oro y biomoléculas de reconocimiento capaces de formar complejos de afinidad (antígeno-anticuerpo, aptámero-molécula blanco, ADN-ADN, PNA-ADN, lectinas-hidratos de carbono, ligandos-cationes metálicos y avidina-biotina). Se sintetizarán y caracterizarán nuevos monómeros y polímeros funcionalizados con moléculas bioactivas y/o grupos rédox empleando diferentes rutas sintéticas. Se desarrollarán genosensores para la detección del evento de hibridación de secuencias de interés médico (cáncer de colon y de mama, tuberculosis); aptasensores para la detección de marcadores proteicos de T. cruzi, enfermedades cardiovasculares y contaminantes catiónicos; inmunosensores para la detección de biomarcadores proteicos relacionados con enfermedades cardiovasculares y cáncer; y biosensores de afinidad con lectinas para la detección de hidratos de carbono. La caracterización de las plataformas y las señales analíticas se obtendrán empleando las siguientes técnicas: voltamperometrías cíclica, de pulso diferencial y de onda cuadrada; stripping; resonancia de plasmón superficial; espectroscopía de impedancia electroquímica; microscopías de barrido electroquímico, SEM, TEM, AFM,SNOM, espectroscopías: UV-vis, FTIR,Raman;RMN, TGA y DSC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The involvement of A to I RNA editing in antiviral responses was first indicated by the observation of genomic hyper-mutation for several RNA viruses in the course of persistent infections. However, in only a few cases an antiviral role was ever demonstrated and surprisingly, it turns out that ADARs - the RNA editing enzymes - may have a prominent pro-viral role through the modulation/down-regulation of the interferon response. A key role in this regulatory function of RNA editing is played by ADAR1, an interferon inducible RNA editing enzyme. A distinguishing feature of ADAR1, when compared with other ADARs, is the presence of a Z-DNA binding domain, Zalpha. Since the initial discovery of the specific and high affinity binding of Zalpha to CpG repeats in a left-handed helical conformation, other proteins, all related to the interferon response pathway, were shown to have similar domains throughout the vertebrate lineage. What is the biological function of this domain family remains unclear but a significant body of work provides pieces of a puzzle that points to an important role of Zalpha domains in the recognition of foreign nucleic acids in the cytoplasm by the innate immune system. Here we will provide an overview of our knowledge on ADAR1 function in interferon response with emphasis on Zalpha domains.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We generated draft genome sequences for two cold-adapted Archaea, Methanogenium frigidum and Methanococcoides burtonii, to identify genotypic characteristics that distinguish them from Archaea with a higher optimal growth temperature (OGT). Comparative genomics revealed trends in amino acid and tRNA composition, and structural features of proteins. Proteins from the cold-adapted Archaea are characterized by a higher content of noncharged polar amino acids, particularly Gin and Thr and a lower content of hydrophobic amino acids, particularly Leu. Sequence data from nine methanogen genomes (OGT 15degrees-98degreesC) were used to generate IIII modeled protein structures. Analysis of the models from the cold-adapted Archaea showed a strong tendency in the solvent-accessible area for more Gin, Thr, and hydrophobic residues and fewer charged residues. A cold shock domain (CSD) protein (CspA homolog) was identified in M. frigidum, two hypothetical proteins with CSD-folds in M. burtonii, and a unique winged helix DNA-binding domain protein in M. burtonii. This suggests that these types of nucleic acid binding proteins have a critical role in cold-adapted Archaea. Structural analysis of tRNA sequences from the Archaea indicated that GC content is the major factor influencing tRNA stability in hyperthermophiles, but not in the psychrophiles, mesophiles or moderate thermophiles. Below an OGT of 60degreesC, the GC content in tRNA was largely unchanged, indicating that any requirement for flexibility of tRNA in psychrophiles is mediated by other means. This is the first time that comparisons have been performed with genome data from Archaea spanning the growth temperature extremes. from psychrophiles to hyperthermophiles