954 resultados para Nuclear collision
Resumo:
The purpose of gamma spectrometry and gamma and X-ray tomography of nuclear fuel is to determine both radionuclide concentration and integrity and deformation of nuclear fuel. The aims of this thesis have been to find out the basics of gamma spectrometry and tomography of nuclear fuel, to find out the operational mechanisms of gamma spectrometry and tomography equipment of nuclear fuel, and to identify problems that relate to these measurement techniques. In gamma spectrometry of nuclear fuel the gamma-ray flux emitted from unstable isotopes is measured using high-resolution gamma-ray spectroscopy. The production of unstable isotopes correlates with various physical fuel parameters. In gamma emission tomography the gamma-ray spectrum of irradiated nuclear fuel is recorded for several projections. In X-ray transmission tomography of nuclear fuel a radiation source emits a beam and the intensity, attenuated by the nuclear fuel, is registered by the detectors placed opposite. When gamma emission or X-ray transmission measurements are combined with tomographic image reconstruction methods, it is possible to create sectional images of the interior of nuclear fuel. MODHERATO is a computer code that simulates the operation of radioscopic or tomographic devices and it is used to predict and optimise the performance of imaging systems. Related to the X-ray tomography, MODHERATO simulations have been performed by the author. Gamma spectrometry and gamma and X-ray tomography are promising non-destructive examination methods for understanding fuel behaviour under normal, transient and accident conditions.
Resumo:
This thesis includes several thermal hydraulic analyses related to the Loviisa WER 440 nuclear power plant units. The work consists of experimental studies, analysis of the experiments, analysis of some plant transits and development of a calculational model for calculation of boric acid concentrations in the reactor. In the first part of the thesis, in the case of won of boric acid solution behaviour during long term cooling period of LOCAs, experiments were performed in scaled down test facilities. The experimental data together with the results of RELAPS/MOD3 simulations were used to develop a model for calculations of boric acid concentrations in the reactor during LOCAs. The results of calculations showed that margins to critical concentrations that would lead to boric acid crystallization were large, both in the reactor core and in the lower plenum. This was mainly caused by the fact that water in the primary cooling circuit includes borax (Na)BsO,.IOHZO), which enters the reactor when ECC water is taken from the sump and greatly increases boric acid solubility in water. In the second part, in the case of simulation of horizontal steam generators, experiments were performed with PACTEL integral test loop to simulate loss of feedwater transients. The PACTEL experiments, as well as earlier REWET III natural circulation tests, were analyzed with RELAPS/MOD3 Version Sm5 code. The analysis showed that the code was capable of simulating the main events during the experiments. However, in the case of loss of secondary side feedwater the code was not completely capable to simulate steam superheating in the secondary side of the steam generators. The third part of the work consists of simulations of Loviisa VVER reactor pump trip transients with RELAPSlMODI Eur, RELAPS/MOD3 and CATHARE codes. All three codes were capable to simulate the two selected pump trip transients and no significant differences were found between the results of different codes. Comparison of the calculated results with the data measured in the Loviisa plant also showed good agreement.
Resumo:
The literature carries many theories about the mechanism of action of local anesthetics (LA). We can highlight those focusing the direct effect of LA on the sodium channel protein and the ones that consider the interaction of anesthetic molecules with the lipid membrane phase. The interaction between local anesthetics and human erythrocyte membranes has been studied by ¹H and 31P nuclear magnetic resonance spectroscopy. It was found that lidocaine (LDC) and benzocaine (BZC) bind to the membranes, increase the mobility of the protons of the phospholipid's acyl chains, and decrease the mobility and/or change the structure of the polar head groups. The results indicate that lidocaine molecules are inserted across the polar and liquid interface of the membrane, establishing both electrostatic (charged form) and hydrophobic (neutral form) interactions. Benzocaine locates itself a little deeper in the bilayer, between the interfacial glycerol region and the hydrophobic core. These changes in mobility or conformation of membrane lipids could affect the Na+-channel protein insertion in the bilayer, stabilizing it in the inactivated state, thus causing anesthesia.
Resumo:
The main purpose of this work is to describe the use of the technique Site-Specific Natural Isotopic Fractionation of hydrogen (SNIF-NMR), using ²H and ¹H NMR spectroscopy, to investigate the biosynthetic origin of acetic acid in commercial samples of Brazilian vinegar. This method is based on the deuterium to hydrogen ratio at a specific position (methyl group) of acetic acid obtained by fermentation, through different biosynthetic mechanisms, which result in different isotopic ratios. We measured the isotopic ratio of vinegars obtained through C3, C4, and CAM biosynthetic mechanisms, blends of C3 and C4 (agrins) and synthetic acetic acid.
Resumo:
Coffee is one of the beverages most widely consumed in the world and the "cafezinho" is normally prepared from a blend of roasted powder of two species, Coffea arabica and Coffea canephora. Each one exhibits differences in their taste and in the chemical composition, especially in the caffeine percentage. There are several procedures proposed in the literature for caffeine determination in different samples like soft drinks, coffee, medicines, etc but most of them need a sample workup which involves at least one step of purification. This work describes the quantitative analysis of caffeine using ¹H NMR and the identification of the major components in commercial coffee samples using 1D and 2D NMR techniques without any sample pre-treatment.
Resumo:
During the last five decades, as a result of an interaction between natural product chemistry, synthetic organic chemistry, molecular biology and spectroscopy, scientists reached an extraordinary level of comprehension about the natural processes by which living organisms build up complex molecules. In this context, 13C nuclear magnetic resonance spectroscopy, allied with isotopic labeling, played a determinant role. Nowadays, the widespread use of modern NMR techniques allows an even more detailed picture of the biochemical steps by accurate manipulation of the atomic nuclei. This article focuses on the development of such techniques and their impact on biosynthetic studies.
Resumo:
The relationship between the magnetic dipole-dipole potential energy function and its quantum analogue is presented in this work. It is assumed the reader is familiar with the classical expression of the dipolar interaction and has basic knowledge of the quantum mechanics of angular momentum. Except for these two points only elementary steps are involved.
Resumo:
Glass ionomer cements (GICs) are products of the acid-base setting reaction between an finely fluoro-alumino silicate glass powder and poly(acrylic acid) in aqueous solution. The sol gel method is an adequate route of preparation of the glasses used to obtain the GICs. The objective of this paper was to compare two powders: a commercial and an experimental and to investigate the structural changes during hardening of the cements by FTIR and Al MAS NMR. These analyses showed that the experimental glass powder reacted with organic acid to form the GICs and it is a promising material to manufacture dental cements.
Resumo:
In this work, ¹H Nuclear Magnetic Resonance (¹H NMR) was employed to evaluate changes in apple juice in response to the addition of Panzym® Yieldmash and Ultrazym® AFP-L enzymatic complexes and compare it with premium apple juice. The juice was processed at different temperatures and concentrations of enzymatic complexes. The differences in the results were attributed mainly to the enzyme concentrations, since temperature did not cause any variation. A quantitative analysis indicated that the concentration of fructose increased while the concentrations of sucrose and glucose decreased in response to increasing concentrations of the enzymatic complexes.
RESSONÂNCIA MAGNÉTICA NUCLEAR DE SUBSTÂNCIAS ORGANOFLUORADAS: UM DESAFIO NO ENSINO DE ESPECTROSCOPIA
Resumo:
Nuclear magnetic resonance is a technique that is widely used for elucidating and characterizing organic substances. Organofluorine substances have applications in many areas from drugs to liquid crystals, but their NMR spectra are often challenging due to fluoride coupling with other nuclei. For this reason, NMR spectra of this class of substances are not commonly covered in undergraduate and graduate chemistry courses and related fields. Thus, the aim of this work was the presentation and discussion of 1H, 13C, and 19F NMR spectra of eleven organofluorine substances which, in the case of 1H and 13C nuclei, showed classic patterns of first-order coupling and the effects of the fluorine nucleus in different chemical and magnetic environments. In addition, the observation of long distance coupling constants was possible through the use of apodization functions in the processing of the spectra. It is expected that the examples presented herein can be utilized and discussed in undergraduate and graduate NMR spectroscopy disciplines and thus improve the teaching and future research of organofluorine compounds.
Resumo:
In this thesis three experiments with atomic hydrogen (H) at low temperatures T<1 K are presented. Experiments were carried out with two- (2D) and three-dimensional (3D) H gas, and with H atoms trapped in solid H2 matrix. The main focus of this work is on interatomic interactions, which have certain specific features in these three systems considered. A common feature is the very high density of atomic hydrogen, the systems are close to quantum degeneracy. Short range interactions in collisions between atoms are important in gaseous H. The system of H in H2 differ dramatically because atoms remain fixed in the H2 lattice and properties are governed by long-range interactions with the solid matrix and with H atoms. The main tools in our studies were the methods of magnetic resonance, with electron spin resonance (ESR) at 128 GHz being used as the principal detection method. For the first time in experiments with H in high magnetic fields and at low temperatures we combined ESR and NMR to perform electron-nuclear double resonance (ENDOR) as well as coherent two-photon spectroscopy. This allowed to distinguish between different types of interactions in the magnetic resonance spectra. Experiments with 2D H gas utilized the thermal compression method in homogeneous magnetic field, developed in our laboratory. In this work methods were developed for direct studies of 3D H at high density, and for creating high density samples of H in H2. We measured magnetic resonance line shifts due to collisions in the 2D and 3D H gases. First we observed that the cold collision shift in 2D H gas composed of atoms in a single hyperfine state is much smaller than predicted by the mean-field theory. This motivated us to carry out similar experiments with 3D H. In 3D H the cold collision shift was found to be an order of magnitude smaller for atoms in a single hyperfine state than that for a mixture of atoms in two different hyperfine states. The collisional shifts were found to be in fair agreement with the theory, which takes into account symmetrization of the wave functions of the colliding atoms. The origin of the small shift in the 2D H composed of single hyperfine state atoms is not yet understood. The measurement of the shift in 3D H provides experimental determination for the difference of the scattering lengths of ground state atoms. The experiment with H atoms captured in H2 matrix at temperatures below 1 K originated from our work with H gas. We found out that samples of H in H2 were formed during recombination of gas phase H, enabling sample preparation at temperatures below 0.5 K. Alternatively, we created the samples by electron impact dissociation of H2 molecules in situ in the solid. By the latter method we reached highest densities of H atoms reported so far, 3.5(5)x1019 cm-3. The H atoms were found to be stable for weeks at temperatures below 0.5 K. The observation of dipolar interaction effects provides a verification for the density measurement. Our results point to two different sites for H atoms in H2 lattice. The steady-state nuclear polarizations of the atoms were found to be non-thermal. The possibility for further increase of the impurity H density is considered. At higher densities and lower temperatures it might be possible to observe phenomena related to quantum degeneracy in solid.
Resumo:
Paper presented in ISA RC23 meeting, Gothenburg July 16th 2010
Resumo:
RESUMO Este ensaio destaca a importância das competências de comunicação clínica (CCC) nas ciências da saúde. Estas competências podem ser ensinadas, aprendidas e avaliadas, e vários estudos evidenciam para as vantagens de uma formação específica nesta área, potenciando a relação que os profissionais da área da saúde estabelecem com os pacientes, cuidadores informais e equipas de saúde, com resultados melhorados nos indicadores de saúde e cuidados mais humanizados. Confrontados com dificuldades na integração de programas específicos de comunicação nos curricula, assim como um défice no processo de avaliação e feedback estruturado, é crucial um investimento na formação pedagógica e no desenvolvimento curricular. Conscientes da escassez de trabalhos sistemáticos que apontam para um consenso sobre as competências e objetivos de ensino-aprendizagem das CCC, o sub-grupo Core Curriculum do comité de ensino (tEACH) da Associação Europeia de Comunicação em Saúde (EACH) desenvolveu e alcançou um consenso para um currículo nuclear nas diferentes áreas da saúde. Neste contexto, surgiu o Health Professions Core Communication Curriculum – HPCCC, que pode servir como referencial flexível de acordo com as necessidades específicas e contribuir para uma maior sistematização das iniciativas de CCC em saúde em língua portuguesa.
Resumo:
The nucleus is a membrane enclosed organelle containing most of the genetic information of the cell in the form of chromatin. The nucleus, which can be divided into many sub-organelles such as the nucleoli, the Cajal bodies and the nuclear lamina, is the site for several essential cellular functions such as the DNA replication and its regulation and most of the RNA synthesis and processing. The nucleus is often affected in disease: the size and the shape of the nucleus, the chromatin distribution and the size of the nucleoli have remained the basis for the grading of several cancers. The maintenance of the vertebrate body shape depends on the skeleton. Similarly, in a smaller context, the shape of the cell and the nucleus are mainly regulated by the cytoskeletal and nucleoskeletal elements. The nuclear matrix, which by definition is a detergent, DNase and salt resistant proteinaceous nuclear structure, has been suggested to form the nucleoskeleton responsible for the nuclear integrity. Nuclear mitotic apparatus protein, NuMA, a component of the nuclear matrix, is better known for its mitotic spindle organizing function. NuMA is one of the nuclear matrix proteins suggested to participate in the maintenance of the nuclear integrity during interphase but its interphase function has not been solved to date. This thesis study concentrated on the role of NuMA and the nuclear matrix as structural and functional components of the interphase nucleus. The first two studies clarified the essential role of caspase-3 in the disintegration of the nuclear structures during apoptosis. The second study also showed NuMA and chromatin to co-elute from cells in significant amounts and the apoptotic cleavage of NuMA was clarified to have an important role in the dissociation of NuMA from the chromatin. The third study concentrated on the interphase function of NuMA showing NuMA depletion to result in cell cycle arrest and the cytoplasmic relocalization of NuMA interaction partner GAS41. We suggest that the relocalization of the transcription factor GAS41 may mediate the cell cycle arrest. Thus, this study has given new aspects in the interactions of NuMA, chromatin and the nuclear matrix.
Resumo:
Diplomityön tarkoituksena oli tutkia vaatimusten hallintaa suunnittelu- ja konsultointiyrityksen kannalta Suomen ydinvoimaprojekteissa keskittyen ydinturvallisuus- ja laatuvaatimuksiin. Ydinvoimaprojekteissa toimiminen on edellyttänyt menettelyohjeiden ja laatujärjestelmän uudelleen organisointia yrityksessä ja esiin on noussut haasteita liittyen muun muassa vaatimusten tunnistamiseen ja todentamiseen erityyppisissä ja erilaajuisissa projekteissa. Työ toteutettiin perehtymällä ydinvoimaan liittyvään lainsäädäntöön Suomessa, ohjeisiin ja standardeihin sekä haastattelemalla yrityksen omia asiantuntijoita. Viimeaikaisista sekä meneillään olevista projekteista kerättiin kokemuksia sekä arvioitiin ydinvoima projekteja varten laaditun projektin toteutusohjeen toimivuutta ja käytettävyyttä esimerkkiprojektin avulla. Suurimmiksi haasteiksi tunnistettiin lainsäädännöllisten vaatimusten, kuten ydinvoima- laitosohjeiden (YVL) muuttuminen ja tulkinnanvaraisuus sekä asiakkaiden perehtymät- tömyys Suomen lainsäädäntöön ja vaatimustasoon liittyen ydinturvallisuuteen. Työn tuloksena tunnistettiin hyviä vaatimusten hallintaan liittyviä projektinhallintaa ja ydin- turvallisuutta edistäviä asioita, kuten vaatimusten täsmentäminen jo sopimustasolla sekä niiden täyttymisen seuranta projektin aikana. Erillisen vaatimustietokannan luomista ydinvoimaprojekteja varten tutkittiin, mutta siitä luovuttiin teknisten vaatimusten osalta kannattamattomana, sillä standardien ja vaatimusten määrä kasvoi niin suureksi, että niiden hallitseminen vaatisi enemmän työtä kuin mitä projektien taso yleensä sallisi.