956 resultados para Nuclear Factor-i


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objetivos: Explorar los factores de riesgo no-biológicos para las demencias, plantear probables perfiles de riesgo para la enfermedad de Alzheimer y sugerir elementos para un posible desarrollo de intervenciones preventivas. Metodología: Se administró un cuestionario sobre eventos vitales y factores de personalidad, elaborado específicamente, a un grupo de enfermos (108 personas con demencia) y un grupo control (49 personas mayores sin demencia), identificando las diferencias significativas con un nivel alfa de 0.05 para todas las pruebas estadísticas. Resultados: Como probables factores de riesgo para la enfermedad de Alzheimer señalar: 1) Aspectos psíquicos: mayor número de trastornos psíquicos familiares graves y mayor respuesta psicosomática personal; 2) Aspectos familiares: mayor número de muertes precoces del padre y estilo educativo más dominante; 3) Educación y trabajo: menor nivel educativo y menor cualificación en el trabajo; 4) Eventos vitales: mayor problemática familiar; 5) Factores de personalidad según el criterio de los cinco grandes: Energía (Evitación, dependencia general y de relación e inhibición), Afabilidad (Introversión), Estabilidad emocional (Afectación, pesimismo e impulsividad), Apertura mental (Indiferencia y rigidez). Conclusiones: Destacar la relevancia del porcentaje de muertes precoces del padre y el déficit de personalidad en el factor I (Energía): Imitación, evitación y dependencia. Como posibles medidas de prevención se sugieren intervenciones que potencien la autonomía personal, la capacidad de afrontamiento y la relación social. Palabras clave: Alzheimer, Demencia, Factores de riesgo, Personalidad premórbida, Psicosocial

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Exposure of pancreatic beta cells to cytokines released by islet-infiltrating immune cells induces alterations in gene expression, leading to impaired insulin secretion and apoptosis in the initial phases of type 1 diabetes. Long non-coding RNAs (lncRNAs) are a new class of transcripts participating in the development of many diseases. As little is known about their role in insulin-secreting cells, this study aimed to evaluate their contribution to beta cell dysfunction. METHODS: The expression of lncRNAs was determined by microarray in the MIN6 beta cell line exposed to proinflammatory cytokines. The changes induced by cytokines were further assessed by real-time PCR in islets of control and NOD mice. The involvement of selected lncRNAs modified by cytokines was assessed after their overexpression in MIN6 cells and primary islet cells. RESULTS: MIN6 cells were found to express a large number of lncRNAs, many of which were modified by cytokine treatment. The changes in the level of selected lncRNAs were confirmed in mouse islets and an increase in these lncRNAs was also seen in prediabetic NOD mice. Overexpression of these lncRNAs in MIN6 and mouse islet cells, either alone or in combination with cytokines, favoured beta cell apoptosis without affecting insulin production or secretion. Furthermore, overexpression of lncRNA-1 promoted nuclear translocation of nuclear factor of κ light polypeptide gene enhancer in B cells 1 (NF-κB). CONCLUSIONS/INTERPRETATION: Our study shows that lncRNAs are modulated during the development of type 1 diabetes in NOD mice, and that their overexpression sensitises beta cells to apoptosis, probably contributing to their failure during the initial phases of the disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The short version of the Oxford-Liverpool Inventory of Feelings and Experiences (sO-LIFE) is a widely used measure assessing schizotypy. There is limited information, however, on how sO-LIFE scores compare across different countries. The main goal of the present study is to test the measurement invariance of the sO-LIFE scores in a large sample of non-clinical adolescents and young adults from four European countries (UK, Switzerland, Italy, and Spain). The scores were obtained from validated versions of the sO-LIFE in their respective languages. The sample comprised 4190 participants (M = 20.87 years; SD = 3.71 years). The study of the internal structure, using confirmatory factor analysis, revealed that both three (i.e., positive schizotypy, cognitive disorganisation, and introvertive anhedonia) and four-factor (i.e., positive schizotypy, cognitive disorganisation, introvertive anhedonia, and impulsive nonconformity) models fitted the data moderately well. Multi-group confirmatory factor analysis showed that the three-factor model had partial strong measurement invariance across countries. Eight items were non-invariant across samples. Significant statistical differences in the mean scores of the s-OLIFE were found by country. Reliability scores, estimated with Ordinal alpha ranged from 0.75 to 0.87. Using the Item Response Theory framework, the sO-LIFE provides more accuracy information at the medium and high end of the latent trait. The current results show further evidence in support of the psychometric proprieties of the sO-LIFE, provide new information about the cross-cultural equivalence of schizotypy and support the use of this measure to screen for psychotic-like features and liability to psychosis in general population samples from different European countries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nuclear factor κB (NF-κB) transcription factor is a master regulator of inflammation. Short-term NF-κB activation is generally beneficial. However, sustained NF-κB might be detrimental, directly causing apoptosis of cells or leading to a persistent damaging inflammatory response. NF-κB activity in stressed cells needs therefore to be controlled for homeostasis maintenance. In mildly stressed cells, caspase-3 cleaves p120 RasGAP, also known as RASA1, into an N-terminal fragment, which we call fragment N. We show here that this fragment is a potent NF-κB inhibitor. Fragment N decreases the transcriptional activity of NF-κB by promoting its export from the nucleus. Cells unable to generate fragment N displayed increased NF-κB activation upon stress. Knock-in mice expressing an uncleavable p120 RasGAP mutant showed exaggerated NF-κB activation when their epidermis was treated with anthralin, a drug used for the treatment of psoriasis. Our study provides biochemical and genetic evidence of the importance of the caspase-3-p120-RasGAP stress-sensing module in the control of stress-induced NF-κB activation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pyruvate dehydrogenase kinase 4 (PDK4) inhibition by nuclear factor-κB (NF-κB) is related to a shift towards increased glycolysis during cardiac pathological processes such as cardiac hypertrophy and heart failure. The transcription factors estrogen-related receptor-α (ERRα) and peroxisome proliferator-activated receptor (PPAR) regulate PDK4 expression through the potent transcriptional coactivator PPARγ coactivator-1α (PGC-1α). NF-κB activation in AC16 cardiac cells inhibit ERRα and PPARβ/δ transcriptional activity, resulting in reduced PGC-1α and PDK4 expression, and an enhanced glucose oxidation rate. However, addition of the NF-κB inhibitor parthenolide to these cells prevents the downregulation of PDK4 expression but not ERRα and PPARβ/δ DNA binding activity, thus suggesting that additional transcription factors are regulating PDK4. Interestingly, a recent study has demonstrated that the transcription factor E2F1, which is crucial for cell cycle control, may regulate PDK4 expression. Given that NF-κB may antagonize the transcriptional activity of E2F1 in cardiac myocytes, we sought to study whether inflammatory processes driven by NF-κB can downregulate PDK4 expression in human cardiac AC16 cells through E2F1 inhibition. Protein coimmunoprecipitation indicated that PDK4 downregulation entailed enhanced physical interaction between the p65 subunit of NF-κB and E2F1. Chromatin immunoprecipitation analyses demonstrated that p65 translocation into the nucleus prevented the recruitment of E2F1 to the PDK4 promoter and its subsequent E2F1-dependent gene transcription. Interestingly, the NF-κB inhibitor parthenolide prevented the inhibition of E2F1, while E2F1 overexpression reduced interleukin expression in stimulated cardiac cells. Based on these findings, we propose that NF-κB acts as a molecular switch that regulates E2F1-dependent PDK4 gene transcription.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract: Infection with Escherichia coli (E. coli) is a common disease in poultry industry. The use of antibiotics to treat diseases is facing serious criticism and concerns. The medicinal plants may be effective alternatives because of their multiplex activities. The aim of this study was to investigate the effects of cinnamon extract on the levels of liver enzymes, tumor necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-κB) gene expressions in liver of broiler chickens infected with E. coli. Ninety Ross-308 broilers were divided into healthy or E. coli-infected groups, receiving normal or cinnamon extract (in concentrations of 100 or 200mg/kg of food) supplemented diets. E. coli suspension (108cfu) was injected subcutaneously after 12 days cinnamon administration. Seventy-two hours after E. coli injection, the blood samples were taken for biochemical analysis of liver enzymes in serum (spectrophotometrically), and liver tissue samples were obtained for detection of gene expression of inflammatory markers TNF-α and NF-κB, using real-time PCR. Infection with E. coli significantly increased the levels of TNF-α and NF-κB gene expressions as well as some liver enzymes including creatine-kinase (CK), lactate-dehydrogenase (LDH), alanine-transferase (ALT) and aspartate-transferase (AST) as compared with control group (P<0.05). Pre-administration of cinnamon extract in broilers diet (in both concentrations) significantly reduced the tissue levels of TNF-α and NF-κB gene expressions and enzymes CK and ALT in serum of broiler chickens inoculated with E. coli in comparison with E. coli group (P<0.05 and P<0.01). The levels of LDH and AST were significantly decreased only by 200mg/kg cinnamon extract in infected broilers. The level of alkaline-phosphatase (ALP) was not affected in any groups. Pre-administration of cinnamon extract in diets of broiler chickens inoculated with E. coli could significantly reduce the gene expression levels of pro-inflammatory mediators and liver enzymes activities, thereby protecting the liver against this pathologic condition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cutaneous squamous cell carcinoma (cSCC) consists 20% of keratinocytederived non-melanoma skin cancers (NMSC), the incidence of which is increasing globally. cSCC is the most common metastatic skin cancer and it causes approximately 20% of skin cancer-related deaths. At present, there are no molecular markers for predicting which cSCC lesions are aggressive or metastasize rapidly. UV radiation is the most important risk factor for cSCC. During the development of cSCC, normal epidermal keratinocytes are transformed and form actinic keratosis (AK), which progresses to cSCC in situ (cSCCIS, Bowen’s disease) and finally to invasive and metastatic cSCC. Inflammatory factors and cells are a part of cancer microenvironment and cSCC can develop in the chronically irritated skin or in the context of chronic inflammation. The complement system is a central part of innate immunity and it regulates normal immunological and inflammatory processes. In this study, the role of complement system components and inhibitors were studied in the progression of cSCC in culture and in vivo. Elevated expression of complement factor H (CFH), complement factor I (CFI), complement component C3 and complement factor B (CFB) was noted in cSCC cells in culture. The analysis with immunohistochemistry (IHC) revealed that the expression of CFH, CFI, C3 and CFB was specifically noted in tumor cells in vivo. The staining intensity of CFH, CFI, C3 and CFB was also stronger in invasive cSCC than in AK or cSCCIS samples. The knockdown of CFH, CFI and CFB with specific siRNAs decreased cSCC cell viability and migration, whereas the knockdown of C3 reduced only cSCC cell migration. Moreover, the knockdown of CFI, C3 and CFB inhibited growth of cSCC xenograft tumors established in SCID mice in vivo. In these tumors, CFI, C3 and CFB knockdown decreased the number of proliferating cells. Moreover, the knockdown of CFI increased local inflammation and complement activation. This study provides evidence for the roles of CFH, CFI, C3 and CFB in the tumor progression indicating these as molecular biomarkers and putative therapeutic targets of cSCC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rheumatoid arthritis is characterized by the presence of inflammatory synovitis and destruction of joint cartilage and bone. Tissue proteinases released by synovia, chondrocytes and pannus can cause cartilage destruction and cytokine-activated osteoclasts have been implicated in bone erosions. Rheumatoid arthritis synovial tissues produce a variety of cytokines and growth factors that induce monocyte differentiation to osteoclasts and their proliferation, activation and longer survival in tissues. More recently, a major role in bone erosion has been attributed to the receptor activator of nuclear factor kappa B ligand (RANKL) released by activated lymphocytes and osteoblasts. In fact, osteoclasts are markedly activated after RANKL binding to the cognate RANK expressed on the surface of these cells. RANKL expression can be upregulated by bone-resorbing factors such as glucocorticoids, vitamin D3, interleukin 1 (IL-1), IL-6, IL-11, IL-17, tumor necrosis factor-alpha, prostaglandin E2, or parathyroid hormone-related peptide. Supporting this idea, inhibition of RANKL by osteoprotegerin, a natural soluble RANKL receptor, prevents bone loss in experimental models. Tumor growth factor-ß released from bone during active bone resorption has been suggested as one feedback mechanism for upregulating osteoprotegerin and estrogen can increase its production on osteoblasts. Modulation of these systems provides the opportunity to inhibit bone loss and deformity in chronic arthritis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nuclear factor of activated T cells (NFAT) family of transcription factors has been primarily identified in immune cells; however, these proteins have been recently found to be functionally active in several other non-immune cell types. NFAT proteins are activated upon different stimuli that lead to increased intracellular calcium levels. Regardless of their widely known cytokine gene expression properties, NFATs have been shown to regulate other genes related to cell cycle progression, cell differentiation and apoptosis, revealing a broader role for these proteins in normal cell physiology. Several reports have addressed the participation of NFATs in many aspects of malignant cell transformation and tumorigenic processes. In this review, we will discuss the involvement of the different NFAT family members in the regulation of cell cycling, differentiation and tumor formation, and also its implications on oncogenesis. Better understanding the mechanisms by which NFATs regulate cell cycle and tumor-related events should be relevant for the development of rational anti-cancer therapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mitogen-activated protein kinases (MAPK) may be involved in the pathogenesis of acute renal failure. This study investigated the expression of p-p38 MAPK and nuclear factor kappa B (NF-kappaB) in the renal cortex of rats treated with gentamicin. Twenty rats were injected with gentamicin, 40 mg/kg, im, twice a day for 9 days, 20 with gentamicin + pyrrolidine dithiocarbamate (PDTC, an NF-kappaB inhibitor), 14 with 0.15 M NaCl, im, twice a day for 9 days, and 14 with 0.15 M NaCl , im, twice a day for 9 days and PDTC, 50 mg kg-1 day-1, ip, twice a day for 15 days. The animals were killed 5 and 30 days after the last of the injections and the kidneys were removed for histological, immunohistochemical and Western blot analysis and for nitrate determination. The results of the immunohistochemical study were evaluated by counting the p-p38 MAPK-positive cells per area of renal cortex measuring 0.05 mm². Creatinine was measured by the Jaffé method in blood samples collected 5 and 30 days after the end of the treatments. Gentamicin-treated rats presented a transitory increase in plasma creatinine levels. In addition, animals killed 5 days after the end of gentamicin treatment presented acute tubular necrosis and increased nitrate levels in the renal cortex. Increased expression of p-p38 MAPK and NF-kappaB was also observed in the kidneys from these animals. The animals killed 30 days after gentamicin treatment showed residual areas of interstitial fibrosis in the renal cortex, although the expression of p-p38 MAPK in their kidneys did not differ from control. Treatment with PDTC reduced the functional and structural changes induced by gentamicin as well as the expression of p-p38 MAPK and NF-kappaB. The increased expression of p-p38 MAPK and NF-kappaB observed in these rats suggests that these signaling molecules may be involved in the pathogenesis of tubulointerstitial nephritis induced by gentamicin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We assessed the effect of chronic hyperglycemia on bone mineral density (BMD) and bone remodeling in patients with type 2 diabetes mellitus. We investigated 42 patients with type 2 diabetes under stable control for at least 1 year, 22 of them with good metabolic control (GMC: mean age = 48.8 ± 1.5 years, 11 females) and 20 with poor metabolic control (PMC: mean age = 50.2 ± 1.2 years, 8 females), and 24 normal control individuals (CG: mean age = 46.5 ± 1.1 years, 14 females). We determined BMD in the femoral neck and at the L2-L4 level (DEXA) and serum levels of glucose, total glycated hemoglobin (HbA1), total and ionic calcium, phosphorus, alkaline phosphatase, follicle-stimulating hormone, intact parathyroid hormone (iPTH), 25-hydroxyvitamin D (25-OH-D), insulin-like growth factor I (IGFI), osteocalcin, procollagen type I C propeptide, as well as urinary levels of deoxypyridinoline and creatinine. HbA1 levels were significantly higher in PMC patients (12.5 ± 0.6 vs 7.45 ± 0.2% for GMC and 6.3 ± 0.9% for CG; P < 0.05). There was no difference in 25-OH-D, iPTH or IGFI levels between the three groups. BMD values at L2-L4 (CG = 1.068 ± 0.02 vs GMC = 1.170 ± 0.03 vs PMC = 1.084 ± 0.02 g/cm²) and in the femoral neck (CG = 0.898 ± 0.03 vs GMC = 0.929 ± 0.03 vs PMC = 0.914 ± 0.03 g/cm²) were similar for all groups. PMC presented significantly lower osteocalcin levels than the other two groups, whereas no significant difference in urinary deoxypyridine was observed between groups. The present results demonstrate that hyperglycemia is not associated with increased bone resorption in type 2 diabetes mellitus and that BMD is not altered in type 2 diabetes mellitus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Data about the impact of bariatric surgery (BS) and subsequent weight loss on bone are limited. The objective of the present study was to determine bone mineral density (BMD), bone remodeling metabolites and hormones that influence bone trophism in premenopausal women submitted to BS 9.8 months, on average, before the study (OGg, N = 16). The data were compared to those obtained for women of normal weight (CG, N = 11) and for obese women (OG, N = 12). Eight patients in each group were monitored for one year, with the determination of BMD, of serum calcium, phosphorus, magnesium, parathyroid hormone, 25-hydroxyvitamin D, insulin-like growth factor-I (IGF-I) and osteocalcin, and of urinary calcium and deoxypyridinoline. The biochemical determinations were repeated every three months in the longitudinal study and BMD was measured at the end of the study. Parathyroid hormone levels were similar in the three groups. IGF-I levels (CG = 332 ± 62 vs OG = 230 ± 37 vs OGg = 128 ± 19 ng/mL) were significantly lower in the operated patients compared to the non-operated obese women. Only OGg patients presented a significant fall in BMD of 6.2% at L1-L4, of 10.2% in the femoral neck, and of 5.1% in the forearm. These results suggest that the weight loss induced by BS is associated with a significant loss of bone mass even at sites that are not influenced by weight overload, with hormonal factors such as IGF-I being associated with this process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insulin receptor substrate-1 (IRS-1) is the main intracellular substrate for both insulin and insulin-like growth factor I (IGF-I) receptors and is critical for cell mitogenesis. Thyrotropin is able to induce thyroid cell proliferation through the cyclic AMP intracellular cascade; however, the presence of either insulin or IGF-I is required for the mitogenic effect of thyroid-stimulating hormone (TSH) to occur. The aim of the present study was to determine whether thyroid IRS-1 content is modulated by TSH in vivo. Strikingly, hypothyroid goitrous rats, which have chronically high serum TSH levels (control, C = 2.31 ± 0.28; methimazole (MMI) 21d = 51.02 ± 6.02 ng/mL, N = 12 rats), when treated with 0.03% MMI in drinking water for 21 days, showed significantly reduced thyroid IRS-1 mRNA content. Since goiter was already established in these animals by MMI for 21 days, we also evaluated IRS-1 expression during goitrogenesis. Animals treated with MMI for different periods of time showed a progressive increase in thyroid weight (C = 22.18 ± 1.21; MMI 5d = 32.83 ± 1.48; MMI 7d = 31.1 ± 3.25; MMI 10d = 33.8 ± 1.25; MMI 14d = 45.5 ± 2.56; MMI 18d = 53.0 ± 3.01; MMI 21d = 61.9 ± 3.92 mg, N = 9-15 animals per group) and serum TSH levels (C = 1.57 ± 0.2; MMI 5d = 9.95 ± 0.74; MMI 7d = 10.38 ± 0.84; MMI 10d = 17.72 ± 1.47; MMI 14d = 25.65 ± 1.23; MMI 18d = 35.38 ± 3.69; MMI 21d = 31.3 ± 2.7 ng/mL, N = 9-15 animals per group). Thyroid IRS-1 mRNA expression increased progressively during goitrogenesis, being significantly higher by the 14th day of MMI treatment, and then started to decline, reaching the lowest values by the 21st day, when a significant reduction was detected. In the liver of these animals, however, a significant decrease of IRS-1 mRNA was detected after 14 days of MMI treatment, a mechanism probably involved in the insulin resistance that occurs in hypothyroidism. The increase in IRS-1 expression during goitrogenesis may represent an important event associated with the increased rate of cell mitosis promoted by TSH and indicates that insulin and IGF-I are important co-mitogenic factors in vivo, possibly acting through the activation of IRS-1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Massive hepatectomy associated with infection induces liver dysfunction, or even multiple organ failure and death. Glycyrrhizin has been shown to exhibit anti-oxidant and anti-inflammatory activities. The aim of the present study was to investigate whether glycyrrhizin could attenuate endotoxin-induced acute liver injury after partial hepatectomy. Male Wistar rats (6 to 8 weeks old, weighing 200-250 g) were randomly assigned to three groups of 24 rats each: sham, saline and glycyrrhizin. Rats were injected intravenously with lipopolysaccharide (LPS) 24 h after 70% hepatectomy. Glycyrrhizin, pre-administered three times with 24 h intervals 48 h before hepatectomy, prolonged the survival of rats submitted to partial hepatectomy and LPS injection, compared with saline controls. Glycyrrhizin was shown to attenuate histological hepatic changes and significantly reduced serum levels of aspartate aminotransferase, alanine aminotransferase, and lactic dehydrogenase, at all the indicated times (6 rats from each were sacrificed 1, 3, 6, and 9 h after LPS injection), compared with saline controls. Glycyrrhizin also significantly inhibited hepatocyte apoptosis by down-regulating the expression of caspase-3 and inhibiting the release of cytochrome C from mitochondria into the cytoplasm. The anti-inflammatory activity of glycyrrhizin may rely on the inhibition of release of tumor necrosis factor-a, myeloperoxidase activity, and translocation of nuclear factor-kappa B into the nuclei. Glycyrrhizin also up-regulated the expression of proliferating cell nuclear antigen, implying that it might be able to promote regeneration of livers harmed by LPS. In summary, glycyrrhizin may represent a potent drug protecting the liver against endotoxin-induced injury, especially after massive hepatectomy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stress is triggered by numerous unexpected environmental, social or pathological stimuli occurring during the life of animals, including humans, which determine changes in all of their systems. Although acute stress is essential for survival, chronic, long-lasting stress can be detrimental. In this review, we present data supporting the hypothesis that stress-related events are characterized by modifications of oxidative/nitrosative pathways in the brain in response to the activation of inflammatory mediators. Recent findings indicate a key role for nitric oxide (NO) and an excess of pro-oxidants in various brain areas as responsible for both neuronal functional impairment and structural damage. Similarly, cyclooxygenase-2 (COX-2), another known source of oxidants, may account for stress-induced brain damage. Interestingly, some of the COX-2-derived mediators, such as the prostaglandin 15d-PGJ2 and its peroxisome proliferator-activated nuclear receptor PPARγ, are activated in the brain in response to stress, constituting a possible endogenous anti-inflammatory mechanism of defense against excessive inflammation. The stress-induced activation of both biochemical pathways depends on the activation of the N-methyl-D-aspartate (NMDA) glutamate receptor and on the activation of the transcription factor nuclear factor kappa B (NFκB). In the case of inducible NO synthase (iNOS), release of the cytokine TNF-α also accounts for its expression. Different pharmacological strategies directed towards different sites in iNOS or COX-2 pathways have been shown to be neuroprotective in stress-induced brain damage: NMDA receptor blockers, inhibitors of TNF-α activation and release, inhibitors of NFκB, specific inhibitors of iNOS and COX-2 activities and PPARγ agonists. This article reviews recent contributions to this area addressing possible new pharmacological targets for the treatment of stress-induced neuropsychiatric disorders.