967 resultados para Nuclear Energy
Resumo:
Using time-of-flight spectrometry, the interaction of intense femtosecond laser pulses with argon clusters has been studied by measuring the energy and yield of emitted ions. With two different supersonic nozzles, the dependence of average ion energy (E) over bar on cluster size (n) over bar in a large range of (n) over bar approximate to 3 x 10(3) similar to 3 x 10(6) has been measured. The experimental results indicate that when the cluster size (n) over bar <= 3 x 10(5), the average ion energy (E) over bar proportional to (n) over bar (0.5), Coulomb explosion is the dominant expansion mechanism. Beyond this size, the average ion energy gets saturated gradually, the clusters exhibit a mixed Coulomb-hydrodynamic expansion behavior. We also find that with the increasing gas backing pressure, there is a maximum ion yield, the ion yield decreases as the gas backing pressure is further increased.
Resumo:
Nuclear weak interaction rates, including electron and positron emission rates, and continuum electron and positron capture rates , as well as the associated v and –/v energy loss rates are calculated on a detailed grid of temperature and density for the free nucleons and 226 nuclei with masses between A = 21 and 60. Gamow-Teller and Fermi discrete-state transition matrix element systematics and the Gamow-Teller T^< →/← T^> resonance transitions are discussed in depth and are implemented in the stellar rate calculations. Results of the calculations are presented on an abbreviated grid of temperature and density and comparison is made to terrestrial weak transition rates where possible. Neutron shell blocking of allowed electron capture on heavy nuclei during stellar core collapse is discussed along with several unblocking mechanisms operative at high temperature and density. The results of one-zone collapse calculations are presented which suggest that the effect of neutron shell blocking is to produce a larger core lepton fraction at neutrino trapping which leads to a larger inner-core mass and hence a stronger post-bounce shock.
Resumo:
This paper reports that Coulomb explosions taken place in the experiment of heteronuclear deuterated methane clusters ((CD4)(n)) in a gas jet subjected to intense femtosecond laser pulses (170 mJ, 70 fs) have led to table-top laser driven DD nuclear fusion. The clusters produced in supersonic expansion had an average energies of deuterons produced in the laser-cluster interaction were 60 and 1.5 KeV, respectively. From DD collisons of energetic deuterons, a yield of 2.5(+/-0.4)x10(4) fusion neutrons of 2.45 MeV per shot was realized, giving rise to a neutron production efficiency of about 1.5 x 10(5) per joule of incident laser pulse energy. Theoretical calculations were performed and a fairly good agreement of the calculated neutron yield with that obtained from the present experiment was found.
Resumo:
In the first part I perform Hartree-Fock calculations to show that quantum dots (i.e., two-dimensional systems of up to twenty interacting electrons in an external parabolic potential) undergo a gradual transition to a spin-polarized Wigner crystal with increasing magnetic field strength. The phase diagram and ground state energies have been determined. I tried to improve the ground state of the Wigner crystal by introducing a Jastrow ansatz for the wave function and performing a variational Monte Carlo calculation. The existence of so called magic numbers was also investigated. Finally, I also calculated the heat capacity associated with the rotational degree of freedom of deformed many-body states and suggest an experimental method to detect Wigner crystals.
The second part of the thesis investigates infinite nuclear matter on a cubic lattice. The exact thermal formalism describes nucleons with a Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin-exchange and isospin-exchange interaction. Using auxiliary field Monte Carlo methods, I show that energy and basic saturation properties of nuclear matter can be reproduced. A first order phase transition from an uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical quantities such as compressibility, heat capacity, entropy and grand potential. The structure of the clusters is investigated with the help two-body correlations. I compare symmetry energy and first sound velocities with literature and find reasonable agreement. I also calculate the energy of pure neutron matter and search for a similar phase transition, but the survey is restricted by the infamous Monte Carlo sign problem. Also, a regularization scheme to extract potential parameters from scattering lengths and effective ranges is investigated.
Resumo:
Chapter I
Theories for organic donor-acceptor (DA) complexes in solution and in the solid state are reviewed, and compared with the available experimental data. As shown by McConnell et al. (Proc. Natl. Acad. Sci. U.S., 53, 46-50 (1965)), the DA crystals fall into two classes, the holoionic class with a fully or almost fully ionic ground state, and the nonionic class with little or no ionic character. If the total lattice binding energy 2ε1 (per DA pair) gained in ionizing a DA lattice exceeds the cost 2εo of ionizing each DA pair, ε1 + εo less than 0, then the lattice is holoionic. The charge-transfer (CT) band in crystals and in solution can be explained, following Mulliken, by a second-order mixing of states, or by any theory that makes the CT transition strongly allowed, and yet due to a small change in the ground state of the non-interacting components D and A (or D+ and A-). The magnetic properties of the DA crystals are discussed.
Chapter II
A computer program, EWALD, was written to calculate by the Ewald fast-convergence method the crystal Coulomb binding energy EC due to classical monopole-monopole interactions for crystals of any symmetry. The precision of EC values obtained is high: the uncertainties, estimated by the effect on EC of changing the Ewald convergence parameter η, ranged from ± 0.00002 eV to ± 0.01 eV in the worst case. The charge distribution for organic ions was idealized as fractional point charges localized at the crystallographic atomic positions: these charges were chosen from available theoretical and experimental estimates. The uncertainty in EC due to different charge distribution models is typically ± 0.1 eV (± 3%): thus, even the simple Hückel model can give decent results.
EC for Wurster's Blue Perchl orate is -4.1 eV/molecule: the crystal is stable under the binding provided by direct Coulomb interactions. EC for N-Methylphenazinium Tetracyanoquino- dimethanide is 0.1 eV: exchange Coulomb interactions, which cannot be estimated classically, must provide the necessary binding.
EWALD was also used to test the McConnell classification of DA crystals. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine: 7,7,8,8-Tetracyanoquinodimethan) EC = -4.0 eV while 2εo = 4.65 eV: clearly, exchange forces must provide the balance. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine:para-Chloranil) EC = -4.4 eV, while 2εo = 5.0 eV: again EC falls short of 2ε1. As a Gedankenexperiment, two nonionic crystals were assumed to be ionized: for (1:1)-(Hexamethyl- benzene:para-Chloranil) EC = -4.5 eV, 2εo = 6.6 eV; for (1:1)- (Napthalene:Tetracyanoethylene) EC = -4.3 eV, 2εo = 6.5 eV. Thus, exchange energies in these nonionic crystals must not exceed 1 eV.
Chapter III
A rapid-convergence quantum-mechanical formalism is derived to calculate the electronic energy of an arbitrary molecular (or molecular-ion) crystal: this provides estimates of crystal binding energies which include the exchange Coulomb inter- actions. Previously obtained LCAO-MO wavefunctions for the isolated molecule(s) ("unit cell spin-orbitals") provide the starting-point. Bloch's theorem is used to construct "crystal spin-orbitals". Overlap between the unit cell orbitals localized in different unit cells is neglected, or is eliminated by Löwdin orthogonalization. Then simple formulas for the total kinetic energy Q^(XT)_λ, nuclear attraction [λ/λ]XT, direct Coulomb [λλ/λ'λ']XT and exchange Coulomb [λλ'/λ'λ]XT integrals are obtained, and direct-space brute-force expansions in atomic wavefunctions are given. Fourier series are obtained for [λ/λ]XT, [λλ/λ'λ']XT, and [λλ/λ'λ]XT with the help of the convolution theorem; the Fourier coefficients require the evaluation of Silverstone's two-center Fourier transform integrals. If the short-range interactions are calculated by brute-force integrations in direct space, and the long-range effects are summed in Fourier space, then rapid convergence is possible for [λ/λ]XT, [λλ/λ'λ']XT and [λλ'/λ'λ]XT. This is achieved, as in the Ewald method, by modifying each atomic wavefunction by a "Gaussian convergence acceleration factor", and evaluating separately in direct and in Fourier space appropriate portions of [λ/λ]XT, etc., where some of the portions contain the Gaussian factor.
Resumo:
High-energy ion emission from intense-ultrashort (30fs) laser-pulse- cooled deuterium-cluster (80K) interaction is measured. The deuterium ions have an average energy 20keV, which greatly exceeds Zweiback's expectation [Phys. Rev. Lett. 84 (2000) 2634]. These fast deuterium ions can be used to drive fusion and have a broad prospect.
Resumo:
4 p.
Resumo:
This thesis is a theoretical work on the space-time dynamic behavior of a nuclear reactor without feedback. Diffusion theory with G-energy groups is used.
In the first part the accuracy of the point kinetics (lumped-parameter description) model is examined. The fundamental approximation of this model is the splitting of the neutron density into a product of a known function of space and an unknown function of time; then the properties of the system can be averaged in space through the use of appropriate weighting functions; as a result a set of ordinary differential equations is obtained for the description of time behavior. It is clear that changes of the shape of the neutron-density distribution due to space-dependent perturbations are neglected. This results to an error in the eigenvalues and it is to this error that bounds are derived. This is done by using the method of weighted residuals to reduce the original eigenvalue problem to that of a real asymmetric matrix. Then Gershgorin-type theorems .are used to find discs in the complex plane in which the eigenvalues are contained. The radii of the discs depend on the perturbation in a simple manner.
In the second part the effect of delayed neutrons on the eigenvalues of the group-diffusion operator is examined. The delayed neutrons cause a shifting of the prompt-neutron eigenvalue s and the appearance of the delayed eigenvalues. Using a simple perturbation method this shifting is calculated and the delayed eigenvalues are predicted with good accuracy.
Resumo:
[ES]Este trabajo surge de la inquietud del alumno sobre la energía nuclear y mas concretamente sobre la energía de fusión. Esta inquietud se plasma en una recopilación de información sobre los combustibles necesarios , su abundancia y su forma de obtención actual. Analizaremos la posibilidad de implantar alguna de estas plantas de combustible en el País Vasco, junto con un estudio de una posible central nuclear de fusión con la suma de la potencia de cada uno de los reactores de fisión que se encuentran actualmente en funcionamiento en el estado Español. Compararemos las cantidades de combustible necesarias en un año de uranio y el combustible de fusión, así como el coste de construcción de cada una.
Resumo:
This thesis has two major parts. The first part of the thesis will describe a high energy cosmic ray detector -- the High Energy Isotope Spectrometer Telescope (HEIST). HEIST is a large area (0.25 m2sr) balloon-borne isotope spectrometer designed to make high-resolution measurements of isotopes in the element range from neon to nickel (10 ≤ Z ≤ 28) at energies of about 2 GeV/nucleon. The instrument consists of a stack of 12 NaI(Tl) scintilla tors, two Cerenkov counters, and two plastic scintillators. Each of the 2-cm thick NaI disks is viewed by six 1.5-inch photomultipliers whose combined outputs measure the energy deposition in that layer. In addition, the six outputs from each disk are compared to determine the position at which incident nuclei traverse each layer to an accuracy of ~2 mm. The Cerenkov counters, which measure particle velocity, are each viewed by twelve 5-inch photomultipliers using light integration boxes.
HEIST-2 determines the mass of individual nuclei by measuring both the change in the Lorentz factor (Δγ) that results from traversing the NaI stack, and the energy loss (ΔΕ) in the stack. Since the total energy of an isotope is given by Ε = γM, the mass M can be determined by M = ΔΕ/Δγ. The instrument is designed to achieve a typical mass resolution of 0.2 amu.
The second part of this thesis presents an experimental measurement of the isotopic composition of the fragments from the breakup of high energy 40Ar and 56Fe nuclei. Cosmic ray composition studies rely heavily on semi-empirical estimates of the cross-sections for the nuclear fragmentation reactions which alter the composition during propagation through the interstellar medium. Experimentally measured yields of isotopes from the fragmentation of 40Ar and 56Fe are compared with calculated yields based on semi-empirical cross-section formulae. There are two sets of measurements. The first set of measurements, made at the Lawrence Berkeley Laboratory Bevalac using a beam of 287 MeV/nucleon 40Ar incident on a CH2 target, achieves excellent mass resolution (σm ≤ 0.2 amu) for isotopes of Mg through K using a Si(Li) detector telescope. The second set of measurements, also made at the Lawrence Berkeley Laboratory Bevalac, using a beam of 583 MeV/nucleon 56FeFe incident on a CH2 target, resolved Cr, Mn, and Fe fragments with a typical mass resolution of ~ 0.25 amu, through the use of the Heavy Isotope Spectrometer Telescope (HIST) which was later carried into space on ISEE-3 in 1978. The general agreement between calculation and experiment is good, but some significant differences are reported here.
Resumo:
A presente dissertação discute as questões relacionadas à intensificação das mudanças climáticas por causas antrópicas conforme a evolução no uso dos recursos naturais, inovações nos processos produtivos, transformações econômicas, sociais, culturais, políticas e, especialmente ambientais. Aborda a comercialização dos créditos de carbono através de projetos de Mecanismo de Desenvolvimento Limpo (MDL), um dos mecanismos de flexibilização criados pelo Protocolo de Kyoto. No contexto de mudanças climáticas, uma matriz energética que utilize fontes de energia que não emitam gases causadores do efeito estufa (GEE) se mostra uma importante estratégia de desenvolvimento sustentável. Sob essa perspectiva, a energia nucleoelétrica é apresentada como uma alternativa viável aos combustíveis fósseis, considerando que esta é uma energia limpa e compatível com a perspectiva de desenvolvimento sustentável. A Fábrica de Combustível Nuclear (FCN), localizada em Resende (Rio de Janeiro), pertencente às Indústrias Nucleares do Brasil (INB), é um conjunto de sofisticadas fábricas nas quais se processam etapas importantes do ciclo do combustível nuclear. Na FCN, o Centro Zoobotânico realiza a gestão das atividades voltadas para a conservação da natureza tais como o Programa de Recuperação de Mata Ciliar, Reflorestamento e Fauna. O Relatório de inventário das emissões diretas e indiretas de GEE da FCN, elaborado pela INB para o ano de 2008, permite a auto-avaliação da empresa, retratando a preocupação corporativa com as questões relativas às mudanças climáticas. Segundo este Relatório, o total de emissões de GEE quantificado corresponde a 12,14% da capacidade total de sequestro de dióxido de carbono, no período de Janeiro a Dezembro de 2008. A proteção de florestas e a plantação de árvores são componentes essenciais de qualquer estratégia global para mitigação da mudança climática, e a participação da INB no mercado de crédito de carbono pode proporcionar externalidades positivas, tais como ganhos de imagem, adequação a padrões ambientais e melhoria do relacionamento com a sociedade.
Resumo:
Magnetic resonance techniques have given us a powerful means for investigating dynamical processes in gases, liquids and solids. Dynamical effects manifest themselves in both resonance line shifts and linewidths, and, accordingly, require detailed analyses to extract desired information. The success of a magnetic resonance experiment depends critically on relaxation mechanisms to maintain thermal equilibrium between spin states. Consequently, there must be an interaction between the excited spin states and their immediate molecular environment which promote changes in spin orientation while excess magnetic energy is coupled into other degrees of freedom by non-radiative processes. This is well known as spin-lattice relaxation. Certain dynamical processes cause fluctuations in the spin state energy levels leading to spin-spin relaxation and, here again, the environment at the molecular level plays a significant role in the magnitude of interaction. Relatively few electron spin relaxation studies of solutions have been conducted and the present work is addressed toward the extension of our knowledge in this area and the retrieval of dynamical information from line shape analyses on a time scale comparable to diffusion controlled phenomena.
Specifically, the electron spin relaxation of three Mn+23d5 complexes, Mn(CH3CN)6+2, MnCl4-2 in acetonitrile has been studied in considerable detail. The effective spin Hamiltonian constants were carefully evaluated under a wide range of experimental conditions. Resonance widths of these Mn+2 complexes were studied in the presence of various excess ligand ions and as a function of concentration, viscosity, temperature and frequency (X-band, ~9.5 Ԍ Hz and K-band, ~35 Ԍ Hz).
A number of interesting conclusions were drawn from these studies. For the Et4NCl-4-2 system several relaxation mechanisms leading to resonance broadening were observed. One source appears to arise through spin-orbit interactions caused by modulation of the ligand field resulting from transient distortions of the complex imparted by solvent fluctuations in the immediate surroundings of the paramagnetic ion. An additional spin relaxation was assigned to the formation of ion pairs [Et4N+…MnCl4-2] and it was possible to estimate the dissociation constant for this specie in acetonitrile.
The Bu4NBr-MnBr4-2 study was considerably more interesting. As in the former case, solvent fluctuations and ion-pairing of the paramagnetic complex [Bu4N+…MnBr4-2] provide significant relaxation for the electronic spin system. Most interesting, without doubt, is the onset of a new relaxation mechanism leading to resonance broadening which is best interpreted as chemical exchange. Thus, assuming that resonance widths were simply governed by electron spin state lifetimes, we were able to extract dynamical information from an interaction in which the initial and final states are the same
MnBr4-2 + Br- = MnBr4-2 + Br-.
The bimolecular rate constants were obtained at six different temperatures and their magnitudes suggested that the exchange is probably diffusion controlled with essentially a zero energy of activation. The most important source of spin relaxation in this system stems directly from dipolar interactions between the manganese 3d5 electrons. Moreover, the dipolar broadening is strongly frequency dependent indicating a deviation between the transverse and longitudinal relaxation times. We are led to the conclusion that the 3d5 spin states of ion-paired MnBr4-2 are significantly correlated so that dynamical processes are also entering the picture. It was possible to estimate the correlation time, Td, characterizing this dynamical process.
In Part II we study nuclear magnetic relaxation of bromine ions in the MnBr4-2-Bu4NBr-acetonitrile system. Essentially we monitor the 79Br and 81Br linewidths in response to the [MnBr4-2]/[Br-] ratio with the express purpose of supporting our contention that exchange is occurring between "free" bromine ions in the solvent and bromine in the first coordination sphere of the paramagnetic anion. The complexity of the system elicited a two-part study: (1) the linewidth behavior of Bu4NBr in anhydrous CH3CN in the absence of MnBr4-2 and (2) in the presence of MnBr4-2. It was concluded in study (1) that dynamical association, Bu4NBr k1= Bu4N+ + Br-, was modulating field-gradient interactions at frequencies high enough to provide an estimation of the unimolecular rate constant, k1. A comparison of the two isotopic bromine linewidth-mole fraction results led to the conclusion that quadrupole interactions provided the dominant relaxation mechanism. In study (2) the "residual" bromine linewidths for both 79Br and 81Br are clearly controlled by quadrupole interactions which appear to be modulated by very rapid dynamical processes other than molecular reorientation. We conclude that the "residual" linewidth has its origin in chemical exchange and that bromine nuclei exchange rapidly between a "free" solvated ion and the paramagnetic complex, MnBr4-2.
Resumo:
One of the main problems of fusion energy is to achieve longer pulse duration by avoiding the premature reaction decay due to plasma instabilities. The control of the plasma inductance arises as an essential tool for the successful operation of tokamak fusion reactors in order to overcome stability issues as well as the new challenges specific to advanced scenarios operation. In this sense, given that advanced tokamaks will suffer from limited power available from noninductive current drive actuators, the transformer primary coil could assist in reducing the power requirements of the noninductive current drive sources needed for current profile control. Therefore, tokamak operation may benefit from advanced control laws beyond the traditionally used PID schemes by reducing instabilities while guaranteeing the tokamak integrity. In this paper, a novel model predictive control (MPC) scheme has been developed and successfully employed to optimize both current and internal inductance of the plasma, which influences the L-H transition timing, the density peaking, and pedestal pressure. Results show that the internal inductance and current profiles can be adequately controlled while maintaining the minimal control action required in tokamak operation.
Resumo:
Bat flight poses intriguing questions about how flight independently developed in mammals. Flight is among the most energy-consuming activities. Thus, we deduced that changes in energy metabolism must be a primary factor in the origin of flight in bats. The respiratory chain of the mitochondrial produces 95% of the adenosine triphosphate (ATP) needed for locomotion. Because the respiratory chain has a dual genetic foundation, with genes encoded by both the mitochondrial and nuclear genomes, we examined both genomes to gain insights into the evolution of flight within mammals. Evidence for positive selection was detected in 23.08% of the mitochondrial-encoded and 4.90% of nuclear-encoded oxidative phosphorylation (OXPHOS) genes, but in only 2.25% of the nuclear-encoded nonrespiratory genes that function in mitochondria or 1.005% of other nuclear genes in bats. To address the caveat that the two available bat genomes are of only draft quality, we resequenced 77 OXPHOS genes from four species of bats. The analysis of the resequenced gene data are in agreement with our conclusion that a significantly higher proportion of genes involved in energy metabolism, compared with background genes, show evidence of adaptive evolution specific on the common ancestral bat lineage. Both mitochondrial and nuclear-encoded OXPHOS genes display evidence of adaptive evolution along the common ancestral branch of bats, supporting our hypothesis that genes involved in energy metabolism were targets of natural selection and allowed adaptation to the huge change in energy demand that were required during the origin of flight.