964 resultados para Non-homogeneous boundary conditions
Resumo:
The process of spray drying is applied in a number of contexts. One such application is the production of a synthetic rock used for storage of nuclear waste. To establish a framework for a model of the spray drying process for this application, we here develop a model describing evaporation from droplets of pure water, such that the model may be extended to account for the presence of colloid within the droplet. We develop a spherically-symmetric model and formulate continuum equations describing mass, momentum, and energy balance in both the liquid and gas phases from first principles. We establish appropriate boundary conditions at the surface of the droplet, including a generalised Clapeyron equation that accurately describes the temperature at the surface of the droplet. To account for experiment design, we introduce a simplified platinum ball and wire model into the system using a thin wire problem. The resulting system of equations is transformed in order to simplify a finite volume solution scheme. The results from numerical simulation are compared with data collected for validation, and the sensitivity of the model to variations in key parameters, and to the use of Clausius–Clapeyron and generalised Clapeyron equations, is investigated. Good agreement is found between the model and experimental data, despite the simplicity of the platinum phase model.
Resumo:
Spin-density maps, deduced from polarized neutron diffraction experiments, for both the pair and chain compounds of the system Mn2+Cu2+ have been reported recently. These results have motivated us to investigate theoretically the spin populations in such alternant mixed-spin systems. In this paper, we report our studies on the one-dimensional ferrimagnetic systems (S-A,S-B)(N) where hi is the number of AB pairs. We have considered all cases in which the spin Sri takes on allowed values in the range I to 7/2 while the spin S-B is held fixed at 1/2. The theoretical studies have been carried out on the isotropic Heisenberg model, using the density matrix renormalization group method. The effect of the magnitude of the larger spin SA On the quantum fluctuations in both A and B sublattices has been studied as a function of the system size N. We have investigated systems with both periodic and open boundary conditions, the latter with a view to understanding end-of-chain effects. The spin populations have been followed as a function of temperature as well as an applied magnetic field. High-magnetic fields are found to lead to interesting re-entrant behavior. The ratio of spin populations P-A-P-B is not sensitive to temperature at low temperatures.
Resumo:
This paper presents an approximate three-dimensional elasticity solution for an infinitely long, cross-ply laminated circular cylindrical shell panel with simply supported boundary conditions, subjected to an arbitrary discontinuous transverse loading. The solution is based on the principal assumption that the ratio of the thickness of the lamina to its middle surface radius is negligible compared to unity. The validity of this assumption and the range of application of this approximate solution have been established through a comparison with an exact solution. Results of classical and first-order shear deformation shell theories have been compared with the results of the present solution to bring out the accuracy of these theories. It is also shown that for very shallow shell panels the definition of a thin shell should be based on the ratio of thickness to chord width rather than the ratio of thickness to mean radius.
Resumo:
An accretion flow is necessarily transonic around a black hole.However, around a neutron star it may or may not be transonic, depending on the inner disk boundary conditions influenced by the neutron star. I will discuss various transonic behavior of the disk fluid in general relativistic (or pseudo general relativistic) framework. I will address that there are four types of sonic/critical point. possible to form in an accretion disk. It will be shown that how the fluid properties including location of sonic point's vary with angular momentum of the compact object which controls the overall disk dynamics and outflows.
Resumo:
The aim of this study is to investigate the blood flow pattern in carotid bifurcation with a high degree of luminal stenosis, combining in vivo magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). A newly developed two-equation transitional model was employed to evaluate wall shear stress (WSS) distribution and pressure drop across the stenosis, which are closely related to plaque vulnerability. A patient with an 80% left carotid stenosis was imaged using high resolution MRI, from which a patient-specific geometry was reconstructed and flow boundary conditions were acquired for CFD simulation. A transitional model was implemented to investigate the flow velocity and WSS distribution in the patient-specific model. The peak time-averaged WSS value of approximately 73Pa was predicted by the transitional flow model, and the regions of high WSS occurred at the throat of the stenosis. High oscillatory shear index values up to 0.50 were present in a helical flow pattern from the outer wall of the internal carotid artery immediately after the throat. This study shows the potential suitability of a transitional turbulent flow model in capturing the flow phenomena in severely stenosed carotid arteries using patient-specific MRI data and provides the basis for further investigation of the links between haemodynamic variables and plaque vulnerability. It may be useful in the future for risk assessment of patients with carotid disease.
Resumo:
A continuum method of analysis is presented in this paper for the problem of a smooth rigid pin in a finite composite plate subjected to uniaxial loading. The pin could be of interference, push or clearance fit. The plate is idealized to an orthotropic sheet. As the load on the plate is progressively increased, the contact along the pin-hole interface is partial above certain load levels in all three types of fit. In misfit pins (interference or clearance), such situations result in mixed boundary value problems with moving boundaries and in all of them the arc of contact and the stress and displacement fields vary nonlinearly with the applied load. In infinite domains similar problems were analysed earlier by ‘inverse formulation’ and, now, the same approach is selected for finite plates. Finite outer domains introduce analytical complexities in the satisfaction of boundary conditions. These problems are circumvented by adopting a method in which the successive integrals of boundary error functions are equated to zero. Numerical results are presented which bring out the effects of the rectangular geometry and the orthotropic property of the plate. The present solutions are the first step towards the development of special finite elements for fastener joints.
Resumo:
Experimentally measured average velocities through plateau borders of stationary cellular foam, when compared with those calculated with the assumption of rigid Plateau Border walls, show that the assumption of rigid walls severely underestimates the velocities. An analysis of the situation wherein plateau border walls have velocities, as decided by the surface viscosity of the system, is presented here. The plateau border is idealized as a pipe of equilateral triangular cross-section with vertices of the triangle having zero velocity. The pertinent form of Navier-Stoke's equations with inhomogeneous boundary conditions and its solution through a procedure of successive approximations is presented in dimensionless form. The solution reduces to the known solution of slow steady flow through a triangular pipe, when surface viscosity is infinite. Results indicate that the assumption of rigid plateau border walls is valid only when value of the inverse of dimensionless surface viscosity is less than 0.044. Beyond that the assumption severely underestimates the flow and the effect of nonrigidity of the wall must be considered.
Resumo:
An analytical-numerical procedure for obtaining stress intensity factor solutions for an arbitrarily oriented crack in a long, thin circular cylindrical shell is presented. The method of analysis involves obtaining a series solution to the governing shell equation in terms of Mathieu and modified Mathieu functions by the method of separation of variables and satisfying the crack surface boundary conditions numerically using collocation. The solution is then transformed from elliptic coordinates to polar coordinates with crack tip as the origin through a Taylor series expansion and membrane and bending stress intensity factors are computed. Numerical results are presented and discussed for the pressure loading case.
Resumo:
The paper present a spectral iteration technique for the analysis of linear arrays of unequally spaced dipoles of unequal lengths. As an example, the Yagi-Uda array is considered for illustration. Analysis is carried out in both the spatial as well as the spectral domains, the two being linked by the Fourier transform. The fast Fourier transform algorithm is employed to obtain an iterative solution to the electric field integral equation and the need for matrix inversion is circumvented. This technique also provides a convenient means for testing the satisfaction of the boundary conditions on the array elements. Numerical comparison of the input impedance and radiation pattern have been made with results deduced elsewhere by other methods. The computational efficency of this technique has been found to be significant for large arrays.
Resumo:
A special finite element (FASNEL) is developed for the analysis of a neat or misfit fastener in a two-dimensional metallic/composite (orthotropic) plate subjected to biaxial loading. The misfit fasteners could be of interference or clearance type. These fasteners, which are common in engineering structures, cause stress concentrations and are potential sources of failure. Such cases of stress concentration present considerable numerical problems for analysis with conventional finite elements. In FASNEL the shape functions for displacements are derived from series stress function solutions satisfying the governing difffferential equation of the plate and some of the boundary conditions on the hole boundary. The region of the plate outside FASNEL is filled with CST or quadrilateral elements. When a plate with a fastener is gradually loaded the fastener-plate interface exhibits a state of partial contact/separation above a certain load level. In misfit fastener, the extent of contact/separation changes with applied load, leading to a nonlinear moving boundary problem and this is handled by FASNEL using an inverse formulation. The analysis is developed at present for a filled hole in a finite elastic plate providing two axes of symmetry. Numerical studies are conducted on a smooth rigid fastener in a finite elastic plate subjected to uniaxial loading to demonstrate the capability of FASNEL.
Resumo:
A technique for obtaining a uniformly valid solution to the problem of nonlinear propagation of surface acoustic waves excited by a monochromatic line source is presented. The method of solution is an extension of the method of strained coordinates wherein both the dependent and independent variables are expanded in perturbation series. A special transformation is proposed for the independent variables so as to make the expansions uniformly valid and also to satisfy all the boundary conditions. This perturbation procedure, carried out to the second order, yields a solution containing a second harmonic surface wave whose amplitude and phase exhibit an oscillatory variation along the direction of propagation. In addition, the solution also contains a second harmonic bulk wave of constant amplitude but varying phase propagating into the medium.
Resumo:
The spherical indentation strength of a lead zirconate titanate (PZT) piezoelectric ceramic was investigated under poled and unpoled conditions and with different electrical boundary conditions (arising through the use of insulating or conducting indenters). Experimental results show that the indentation strength of the poled PZT is higher than that of the unpoled PZT. The strength of a poled PZT under a conducting indenter is higher than that under an insulating indenter. Poling direction (with respect to the direction of indentation loading) did not significantly affect the strength of material. Complementary finite element analysis (FEA) of spherical indentation of an elastic, linearly coupled piezoelectric half-space is conducted for rationalizing the experimental observations. Simulations show marked dependency of the contact stress on the boundary conditions. In particular, contact stress redistribution in the Coupled problem leads to a change in the fracture initiation, from Hertzian cracking in the unpoled material to Subsurface damage initiation in poled PZT. These observations help explain the experimental ranking of strength the PZT in different material conditions or under different boundary conditions.
Resumo:
Short-time analytical solutions of temperature and moving boundary in two-dimensional two-phase freezing due to a cold spot are presented in this paper. The melt occupies a semi-infinite region. Although the method of solution is valid for various other types of boundary conditions, the results in this paper are given only for the prescribed flux boundary conditions which could be space and time dependent. The freezing front propagations along the interior of the melt region exhibit well known behaviours but the propagations along the surface are of new type. The freezing front always depends on material parameters. Several interesting results can be obtained as particular cases of the general results.
Resumo:
The plane problem of load transfer from an elastic interference or clearance fit pin to a large elastic sheet with a perfectly smooth interface is solved. As the load on the pin is monotonically increased, the pin-hole interface is in partial contact above certain critical load in interference fit and throughout the loading range in clearance fit.Such situations result in mixed boundary-value problems with moving boundaries and the arc of contact varies nonlinearly with applied load. These problems are analyzed by an inverse technique in which the arcs of contact/separation are prescribed and the causative loads are evaluated. A direct method of analysis is adopted using biharmonic polar trigonometric stress functions and a simple collocation method for satisfying the boundary conditions. A unified analytical formulation is achieved for interference and clearance fits. The solutions for the linear problem of push fits are inherent in the unified analysis. Numerical results highlighting the effects of pin and sheet elasticity parameters are presented.
Resumo:
We study small vibrations of cantilever beams contacting a rigid surface. We study two cases: the first is a beam that sags onto the ground due to gravity, and the second is a beam that sticks to the ground through reversible adhesion. In both cases, the noncontacting length varies dynamically. We first obtain the governing equations and boundary conditions, including a transversality condition involving an end moment, using Hamilton's principle. Rescaling the variable length to a constant value, we obtain partial differential equations with time varying coefficients, which, upon linearization, give the natural frequencies of vibration. The natural frequencies for the first case (gravity without adhesion) match that of a clamped-clamped beam of the same nominal length; frequencies for the second case, however, show no such match. We develop simple, if atypical, single degree of freedom approximations for the first modes of these two systems, which provide insights into the role of the static deflection profile, as well as the end moment condition, in determining the first natural frequencies of these systems. Finally, we consider small transverse sinusoidal forcing of the first case and find that the governing equation contains both parametric and external forcing terms. For forcing at resonance, w find that either the internal or the external forcing may dominate.