963 resultados para Non-commutative particles dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An excitation force that is not influenced by the system's states is said to be an ideal energy source. In real situations, a direct and feedback coupling between the excitation source and the system must always exist. This manifestation of the law of conversation of energy is known as Sommerfeld Effect. In the case of obtaining a mathematical model for such system, additional equations are usually necessary to describe the vibration sources and their coupling with the mechanical system. In this work, a cantilever beam and a non-ideal electric DC motor that is fixed to the beam free end is analyzed. The motor has an unbalanced mass that provides excitation to the system proportional to the current applied to the motor. During the motor's coast up operation, as the excitation frequency gets closer to the beam first natural frequency and if the drive power increases further, the DC motor speed remains constant until it suddenly jumps to a much higher value (simultaneously the vibration amplitude jumps to a much lower value) upon exceeding a critical input power. It was found that the Sommerfeld effect depends on some system parameters and the motor operational procedures. These parameters are explored to avoid the resonance capture in Sommerfeld effect. Numerical simulations and experimental tests are used to help insight this dynamic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze new results on a magnetically levitated body (a block including a magnet whose bottom pole is set in such a way as to repel the upper pole of a magnetic base) excited by a non-ideal energy source (an unbalanced electric motor of limited power supply). These new results are related to the jump phenomena and increase of power required of such sources near resonance are manifestations of a non-ideal system and they are referred as the Sommerfeld effect, which emulates an energy sink. In this work, we also discuss control strategies to be applied to this system, in resonance conditions, in order to decrease its vibration amplitude and avoiding this apparent energy sink.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of Brazilian savannah, named locally as “cerrado”, tends to change if the human pressures, such as pasture and intensive fire, are suppressed showing a densification of the physiognomies throughout the time. Vegetation Index acquired from remotely sensed data has been a proper way to study and monitoring large areas, and the Normalized Difference Vegetation Index (NDVI) is one of the most used for this purpose. The aim of this study was to assess the dynamic of structural changes in protected and non-protected areas of cerrado vegetation using NDVI. For this purpose, three cerrado fragments in the state of São Paulo, Brazil, were evaluated for a 26 year time span from 1985 and 2011, being two of them protected against anthropogenic interference. Landsat 5 –Thematic Mapper images were used and processed in ArcGIS. In the protected areas NDVI indicated that the vegetation followed the expected trend of changes for cerrado, with more open physiognomies tending to be denser throughout this period of 26 years, whereas in the non-protected fragment the NDVI evidences human pressure, showing lower phytomass in 2011. NDVI showed to be efficient in detecting and monitoring changes in cerrado vegetation structure, and can be useful to study both, the natural dynamics of cerrado vegetation and the anthropogenic interference in protected areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analysed the seasonal distribution of the zooplankton community in an anthropogenically impacted area (Paranagua Bay) and a non-impacted area (Laranjeiras Bay) of the Paranagua Bay Estuarine Complex. Large phytoplankton (>50 mu m) and zooplankton were collected every two months, between August 2003 and June 2004. The phytoplankton community was numerically dominated by diatoms (78%) and dinoflagellates (19%). Zooplankton abundance varied between 670 and 100,716 individuals m(-3), with a dominance of copepods, mainly the calanoids Acartia lilljeborgii, Acartia tonsa and Pseudodiaptomus acutus. A clear seasonal pattern was observed: copepods were significantly more abundant during the rainy than in the dry season. Significant differences in abundance between the two bays were detected only for cirripede larvae, which were more abundant in Paranagua Bay. This lack of difference between the two areas was probably a consequence of the water circulation along the estuary, which may have diluted and dispersed the pollutants from Paranagua Bay to other areas of the estuary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports results for directed flow v(1) and elliptic flow v(2) of charged particles in Cu + Cu collisions at root s(NN) = 22.4 GeV at the Relativistic Heavy Ion Collider. The measurements are for the 0-60% most central collisions, using charged particles observed in the STAR detector. Our measurements extend to 22.4-GeV Cu + Cu collisions the prior observation that v1 is independent of the system size at 62.4 and 200 GeV and also extend the scaling of v(1) with eta/y(beam) to this system. The measured v(2)(p(T)) in Cu + Cu collisions is similar for root s(NN) throughout the range 22.4 to 200 GeV. We also report a comparison with results from transport model (ultrarelativistic quantum molecular dynamics and multiphase transport model) calculations. The model results do not agree quantitatively with the measured v(1)(eta), v(2)(p(T)), and v(2)(eta).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe (braided-) commutative algebras with non-degenerate multiplicative form in certain braided monoidal categories, corresponding to abelian metric Lie algebras (so-called Drinfeld categories). We also describe local modules over these algebras and classify commutative algebras with a finite number of simple local modules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plasma density evolution in sawtooth regime on the Tore Supra tokamak is analyzed. The density is measured using fast-sweeping X-mode reflectometry which allows tomographic reconstructions. There is evidence that density is governed by the perpendicular electric flows, while temperature evolution is dominated by parallel diffusion. Postcursor oscillations sometimes lead to the formation of a density plateau, which is explained in terms of convection cells associated with the kink mode. A crescent-shaped density structure located inside q = 1 is often visible just after the crash and indicates that some part of the density withstands the crash. 3D full MHD nonlinear simulations with the code XTOR-2F recover this structure and show that it arises from the perpendicular flows emerging from the reconnection layer. The proportion of density reinjected inside the q = 1 surface is determined, and the implications in terms of helium ash transport are discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4766893]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the basis of the full analytical solution of the overall unitary dynamics, the time evolution of entanglement is studied in a simple bipartite model system evolving unitarily from a pure initial state. The system consists of two particles in one spatial dimension bound by harmonic forces and having its free center of mass initially localized in space in a minimum uncertainty wavepacket. The existence of such initial states in which the bound particles are not entangled is discussed. Galilean invariance of the system ensures that the dynamics of entanglement between the two particles is independent of the wavepacket mean momentum. In fact, as shown, it is driven by the dispersive center of mass free dynamics, and evolves in a time scale that depends on the interparticle interaction in an essential way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi. org/10.1063/1.4739533]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The escape dynamics of a classical light ray inside a corrugated waveguide is characterised by the use of scaling arguments. The model is described via a two-dimensional nonlinear and area preserving mapping. The phase space of the mapping contains a set of periodic islands surrounded by a large chaotic sea that is confined by a set of invariant tori. When a hole is introduced in the chaotic sea, letting the ray escape, the histogram of frequency of the number of escaping particles exhibits rapid growth, reaching a maximum value at n(p) and later decaying asymptotically to zero. The behaviour of the histogram of escape frequency is characterised using scaling arguments. The scaling formalism is widely applicable to critical phenomena and useful in characterisation of phase transitions, including transitions from limited to unlimited energy growth in two-dimensional time varying billiard problems. (C) 2011 Elsevier B.V. All rights reserved.