941 resultados para Non-autonomous dynamical systems
Resumo:
As soluções informáticas de Customer Relationship Management (CRM) e os sistemas de suporte à informação, designados por Business Intelligence (BI), permitem a recolha de dados e a sua transformação em informação e em conhecimento, vital para diferenciação das organizações num Mundo globalizado e em constante mudança. A construção de um Data Warehouse corporativo é fundamental para as organizações que utilizam vários sistemas operacionais de modo a ser possível a agregação da informação. A Fundação INATEL – uma fundação privada de interesse público, 100% estatal – é um exemplo deste tipo de organização. Com uma base de dados de clientes superior a 250.000, atuando em áreas tão diferentes como sejam o Turismo, a Cultura e o Desporto, sustentado em mais de 25 sistemas informáticos autónomos. A base de estudo deste trabalho é a procura de identificação dos benefícios da implementação de um CRM Analítico na Fundação INATEL. Apresentando-se assim uma metodologia para a respetiva implementação e sugestão de um modelo de dados para a obtenção de uma visão única do cliente, acessível a toda a organização, de modo a garantir a total satisfação e consequente fidelização à marca INATEL. A disponibilização desta informação irá proporcionar um posicionamento privilegiado da Fundação INATEL e terá um papel fundamental na sua sustentabilidade económica.
Resumo:
For the very large nonlinear dynamical systems that arise in a wide range of physical, biological and environmental problems, the data needed to initialize a numerical forecasting model are seldom available. To generate accurate estimates of the expected states of the system, both current and future, the technique of ‘data assimilation’ is used to combine the numerical model predictions with observations of the system measured over time. Assimilation of data is an inverse problem that for very large-scale systems is generally ill-posed. In four-dimensional variational assimilation schemes, the dynamical model equations provide constraints that act to spread information into data sparse regions, enabling the state of the system to be reconstructed accurately. The mechanism for this is not well understood. Singular value decomposition techniques are applied here to the observability matrix of the system in order to analyse the critical features in this process. Simplified models are used to demonstrate how information is propagated from observed regions into unobserved areas. The impact of the size of the observational noise and the temporal position of the observations is examined. The best signal-to-noise ratio needed to extract the most information from the observations is estimated using Tikhonov regularization theory. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
The management of straw residue can be a concern in non-inversion tillage systems where straw tends to be incorporated at shallow depths or left on the soil surface. This can lead to poor crop establishment because straw residue can impede or hinder crop emergence and growth. Small container-based experiments were undertaken using varying amounts of wheat straw residue either incorporated or placed oil the soil surface. The effects on (lays to seedling emergence, percentage emergence, seedling dry-weight and soil temperature using sugar beet and oilseed rape were investigated because these crops often follow wheat in a cropping sequence. The position of the straw residue was found to be the primary factor in reducing crop emergence and growth. Increasing the amount of straw residue (from 3.3 t ha(-1) to 6.7 t ha(-1)) did not show any consistent trends in reducing crop emergence or growth. However, in some instances, results indicated that an interaction between the position and the amount of straw residue Occurred particularly when the straw and seed was placed on the soil surface. Straw placed on the soil surface significantly reduced mean day-time soil temperature by approximately 2.5 degrees C compared to no residue. When the seed and straw was placed on the soil Surface a lack of seed-to-soil contact caused a reduction in emergence by approximately 30% because of the restriction in available moisture that limited the ability for seed imbibition. This trend was reversed when the seed was placed in the soil, but with straw residue still on the soil surface, because the surface straw was likely to reduce moisture evaporation and improved seed-to-soil contact that led to rapid emergence. In general, when straw was mixed in or placed on the soil surface along with the seed, sugar beet and oilseed rape emergence and early growth biomass was significantly restricted by approximately 50% compared to no residue. The consequences of placing seed with or near to straw residue have been shown to cause a restriction in crop establishment. In both oilseed tape and sugar beet, this could lead to a reduction in final crop densities, poor, uneven growth and potentially lower yields that could lower financial margins. Therefore, if farmers are planning to use non-inversion tillage methods for crop establishment, the management and removal of straw residue from near or above the seed is considered important for successful crop establishment. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Syntactic theory provides a rich array of representational assumptions about linguistic knowledge and processes. Such detailed and independently motivated constraints on grammatical knowledge ought to play a role in sentence comprehension. However most grammar-based explanations of processing difficulty in the literature have attempted to use grammatical representations and processes per se to explain processing difficulty. They did not take into account that the description of higher cognition in mind and brain encompasses two levels: on the one hand, at the macrolevel, symbolic computation is performed, and on the other hand, at the microlevel, computation is achieved through processes within a dynamical system. One critical question is therefore how linguistic theory and dynamical systems can be unified to provide an explanation for processing effects. Here, we present such a unification for a particular account to syntactic theory: namely a parser for Stabler's Minimalist Grammars, in the framework of Smolensky's Integrated Connectionist/Symbolic architectures. In simulations we demonstrate that the connectionist minimalist parser produces predictions which mirror global empirical findings from psycholinguistic research.
Resumo:
More than thirty years ago, Amari and colleagues proposed a statistical framework for identifying structurally stable macrostates of neural networks from observations of their microstates. We compare their stochastic stability criterion with a deterministic stability criterion based on the ergodic theory of dynamical systems, recently proposed for the scheme of contextual emergence and applied to particular inter-level relations in neuroscience. Stochastic and deterministic stability criteria for macrostates rely on macro-level contexts, which make them sensitive to differences between different macro-levels.
Resumo:
This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi and Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The first contribution of the paper is the introduction of a one to one mapping between a fuzzy rule-base and a model matrix feature subspace using the T-S inference mechanism. This link enables the numerical properties associated with a rule-based matrix subspace, the relationships amongst these matrix subspaces, and the correlation between the output vector and a rule-base matrix subspace, to be investigated and extracted as rule-based knowledge to enhance model transparency. The matrix subspace spanned by a fuzzy rule is initially derived as the input regression matrix multiplied by a weighting matrix that consists of the corresponding fuzzy membership functions over the training data set. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule, so that rule-bases can be effectively measured by their identifiability via the A-optimality experimental design criterion. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level. This new approach is computationally simpler than the conventional Gram-Schmidt algorithm for resolving high dimensional regression problems, whereby it is computationally desirable to decompose complex models into a few submodels rather than a single model with large number of input variables and the associated curse of dimensionality problem. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
A new robust neurofuzzy model construction algorithm has been introduced for the modeling of a priori unknown dynamical systems from observed finite data sets in the form of a set of fuzzy rules. Based on a Takagi-Sugeno (T-S) inference mechanism a one to one mapping between a fuzzy rule base and a model matrix feature subspace is established. This link enables rule based knowledge to be extracted from matrix subspace to enhance model transparency. In order to achieve maximized model robustness and sparsity, a new robust extended Gram-Schmidt (G-S) method has been introduced via two effective and complementary approaches of regularization and D-optimality experimental design. Model rule bases are decomposed into orthogonal subspaces, so as to enhance model transparency with the capability of interpreting the derived rule base energy level. A locally regularized orthogonal least squares algorithm, combined with a D-optimality used for subspace based rule selection, has been extended for fuzzy rule regularization and subspace based information extraction. By using a weighting for the D-optimality cost function, the entire model construction procedure becomes automatic. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
A simple parameter adaptive controller design methodology is introduced in which steady-state servo tracking properties provide the major control objective. This is achieved without cancellation of process zeros and hence the underlying design can be applied to non-minimum phase systems. As with other self-tuning algorithms, the design (user specified) polynomials of the proposed algorithm define the performance capabilities of the resulting controller. However, with the appropriate definition of these polynomials, the synthesis technique can be shown to admit different adaptive control strategies, e.g. self-tuning PID and self-tuning pole-placement controllers. The algorithm can therefore be thought of as an embodiment of other self-tuning design techniques. The performances of some of the resulting controllers are illustrated using simulation examples and the on-line application to an experimental apparatus.
Resumo:
A self-tuning controller which automatically assigns weightings to control and set-point following is introduced. This discrete-time single-input single-output controller is based on a generalized minimum-variance control strategy. The automatic on-line selection of weightings is very convenient, especially when the system parameters are unknown or slowly varying with respect to time, which is generally considered to be the type of systems for which self-tuning control is useful. This feature also enables the controller to overcome difficulties with non-minimum phase systems.
Resumo:
In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. (Phys. Rev. Lett. 97(21): 210602, 2006) have found analytical results.
Resumo:
In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems that have a singular measure. Using the block maxima approach described in Faranda et al. [2011] we show that, numerically, the Extreme Value distribution for these maps can be associated to the Generalised Extreme Value family where the parameters scale with the information dimension. The numerical analysis are performed on a few low dimensional maps. For the middle third Cantor set and the Sierpinskij triangle obtained using Iterated Function Systems, experimental parameters show a very good agreement with the theoretical values. For strange attractors like Lozi and H\`enon maps a slower convergence to the Generalised Extreme Value distribution is observed. Even in presence of large statistics the observed convergence is slower if compared with the maps which have an absolute continuous invariant measure. Nevertheless and within the uncertainty computed range, the results are in good agreement with the theoretical estimates.
Resumo:
Several methods are examined which allow to produce forecasts for time series in the form of probability assignments. The necessary concepts are presented, addressing questions such as how to assess the performance of a probabilistic forecast. A particular class of models, cluster weighted models (CWMs), is given particular attention. CWMs, originally proposed for deterministic forecasts, can be employed for probabilistic forecasting with little modification. Two examples are presented. The first involves estimating the state of (numerically simulated) dynamical systems from noise corrupted measurements, a problem also known as filtering. There is an optimal solution to this problem, called the optimal filter, to which the considered time series models are compared. (The optimal filter requires the dynamical equations to be known.) In the second example, we aim at forecasting the chaotic oscillations of an experimental bronze spring system. Both examples demonstrate that the considered time series models, and especially the CWMs, provide useful probabilistic information about the underlying dynamical relations. In particular, they provide more than just an approximation to the conditional mean.
Resumo:
We study inverse problems in neural field theory, i.e., the construction of synaptic weight kernels yielding a prescribed neural field dynamics. We address the issues of existence, uniqueness, and stability of solutions to the inverse problem for the Amari neural field equation as a special case, and prove that these problems are generally ill-posed. In order to construct solutions to the inverse problem, we first recast the Amari equation into a linear perceptron equation in an infinite-dimensional Banach or Hilbert space. In a second step, we construct sets of biorthogonal function systems allowing the approximation of synaptic weight kernels by a generalized Hebbian learning rule. Numerically, this construction is implemented by the Moore–Penrose pseudoinverse method. We demonstrate the instability of these solutions and use the Tikhonov regularization method for stabilization and to prevent numerical overfitting. We illustrate the stable construction of kernels by means of three instructive examples.
Resumo:
We investigate the error dynamics for cycled data assimilation systems, such that the inverse problem of state determination is solved at tk, k = 1, 2, 3, ..., with a first guess given by the state propagated via a dynamical system model from time tk − 1 to time tk. In particular, for nonlinear dynamical systems that are Lipschitz continuous with respect to their initial states, we provide deterministic estimates for the development of the error ||ek|| := ||x(a)k − x(t)k|| between the estimated state x(a) and the true state x(t) over time. Clearly, observation error of size δ > 0 leads to an estimation error in every assimilation step. These errors can accumulate, if they are not (a) controlled in the reconstruction and (b) damped by the dynamical system under consideration. A data assimilation method is called stable, if the error in the estimate is bounded in time by some constant C. The key task of this work is to provide estimates for the error ||ek||, depending on the size δ of the observation error, the reconstruction operator Rα, the observation operator H and the Lipschitz constants K(1) and K(2) on the lower and higher modes of controlling the damping behaviour of the dynamics. We show that systems can be stabilized by choosing α sufficiently small, but the bound C will then depend on the data error δ in the form c||Rα||δ with some constant c. Since ||Rα|| → ∞ for α → 0, the constant might be large. Numerical examples for this behaviour in the nonlinear case are provided using a (low-dimensional) Lorenz '63 system.