993 resultados para Nitrogen oxides removal
Resumo:
No-tillage systems, associated to black oat as preceding cover crop, have been increasingly adopted. This has motivated anticipated maize nitrogen fertilization, transferring it from the side-dress system at the stage when plants have five to six expanded leaves to when the preceding cover crop is eliminated or to maize sowing. This study was conducted to evaluate the effects of soil tillage system and timing of N fertilization on maize grain yield and agronomic efficiency of N applied to a soil with high organic matter content. A three-year field experiment was conducted in Lages, state of Santa Catarina, from 1999 onwards. Treatments were set up in a split plot arrangement. Two soil tillage systems were tested in the main plots: conventional tillage (CT) and no-tillage (NT). Six N management systems were assessed in the split-plots: S1 - control, without N application; S2 - all N (100 kg ha-1) applied at oat desiccation; S3 - all N applied at maize sowing; S4 - all N side-dressed when maize had five expanded leaves (V5 growth stage); S5 - 1/3 of N rate applied at maize sowing and 2/3 at V5; S6 - 2/3 of nitrogen rate applied at maize sowing and 1/3 at V5. Maize response to the time and form of splitting N was not affected by the soil tillage system. Grain yield ranged from 6.0 to 11.8 t ha-1. The anticipation of N application (S2 and S3) decreased grain yield in two of three years. In the rainiest early spring season (2000/2001) of the experiment, S4 promoted an yield advantage of 2.2 t ha-1 over S2 and S3. Application of total N rate before or at sowing decreased the number of kernels produced per ear in 2000/2001 and 2001/2002 and the number of ears produced per area in 2001/2002, resulting in reduced grain yield. The agronomic efficiency of applied N (kg grain increase/kg of N applied) ranged from 13.9 to 38.8 and was always higher in the S4 than in the S2 and S3 N systems. Short-term N immobilization did not reduce grain yield when no N was applied before or at maize sowing in a soil with high organic matter content, regardless of the soil tillage system.
Resumo:
The industrial refining of kaolin involves the removal of iron oxides and hydroxides along with other impurities that cause discoloration of the final product and depreciate its commercial value, particularly undesirable if destined to the paper industry. The chemical leaching in the industrial processing requires treatments with sodium hyposulfite, metallic zinc, or sulfuric and phosphoric acids, in order to reduce, dissolve and remove ferruginous compounds. To mitigate the environmental impact, the acidic effluent from the leaching process must be neutralized, usually with calcium oxide. The resulting solid residue contains phosphorous, zinc, and calcium, among other essential nutrients for plant growth, suggesting its use as a macro and micronutrient source. Samples of such a solid industrial residue were used here to evaluate their potential as soil fertilizer in an incubation greenhouse experiment with two soil samples (clayey and medium-textured). The small pH shift generated by applying the residue to the soil was not a limiting factor for its use in agriculture. The evolution of the concentrations of exchangeable calcium, and phosphorous and zinc extractability by Mehlich-1 extractant during the incubation period confirms the potential use of this industrial residue as agricultural fertilizer.
Resumo:
Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.
Resumo:
In a greenhouse pot experiment with kohlrabi, variety Luna, we explored the joint effect of N (0.6 g N per pot = 6 kg of soil) and S in the soil (25-35-45 mg kg-1 of S) on yields, on N, S and NO3- content in tubers and leaves, and on alterations in the amino acids concentration in the tubers. S fertilisation had no effect on tuber yields. The ranges of N content in tubers and leaves were narrow (between 1.42-1.48 % N and 1.21-1.35 % N, respectively) and the effect of S fertilisation was insignificant. S concentration in the tubers ranged between 0.59 and 0.64 % S. S fertilisation had a more pronounced effect on the S concentration in leaf tissues where it increased from 0.50 to 0.58 or to 0.76 % S under the applied dose. The NO3- content was higher in tubers than in leaves. Increasing the S level in the soil significantly reduced NO3- concentrations in the tubers by 42.2-53.6 % and in the leaves by 8.8-21.7 %. Increasing the S content in the soil reduced the concentration of cysteine + methionine by 16-28 %. The values of valine, tyrosine, aspartic acid and serine were constant. In the S0, S1, and S2 treatments the levels of threonine, isoleucine, leucine, arginine, the sum of essential amino acids and alanine decreased from 37 to 9 %. The histidine concentration increased with increasing S fertilisation. S fertilisation of kohlrabi can be recommended to stabilize the yield and reduce the undesirable NO3- contained in the parts used for consumption.
Resumo:
Selostus: Typpilannoituksen, kasvilajin ja lajikkeen vaikutus siirtonurmikon tuotanto-ominaisuuksiin Valkeasuon turvetuotannon jättöalueella
Resumo:
In spite of the normally low content of organic matter found in sandy soils, it is responsible for almost the totality of cation exchange capacity (CEC), water storage and availability of plant nutrients. It is therefore important to evaluate the impact of alternative forest exploitation on the improvement of soil C and N accumulation on these soils. This study compared pure and mixed plantations of Eucalyptus grandis and Pseudosamanea guachapele, a N2-fixing leguminous tree, in relation to their effects on soil C and N stocks. The studied Planosol area had formerly been covered by Panicum maximum pasture for at least ten years without any fertilizer addition. To estimate C and N contents, the soil was sampled (at depths of 0-2.5; 2.5-5.0; 5.0-7.5; 7.5-10.0; 10.0-20.0 and 20.0-40.0 cm), in pure and mixed five-year-old tree plantations, as well as on adjacent pasture. The natural abundance 13C technique was used to estimate the contribution of the soil organic C originated from the trees in the 0-10 cm soil layer. Soil C and N stocks under mixed plantation were 23.83 and 1.74 Mg ha-1, respectively. Under guachapele, eucalyptus and pasture areas C stocks were 14.20, 17.19 and 24.24 Mg ha-1, respectively. For these same treatments, total N contents were 0.83; 0.99 and 1.71 Mg ha-1, respectively. Up to 40 % of the soil organic C in the mixed plantation was estimated to be derived from trees, while in pure eucalyptus and guachapele plantations these same estimates were only 19 and 27 %, respectively. Our results revealed the benefits of intercropped leguminous trees in eucalyptus plantations on soil C and N stocks.
Resumo:
Nitrogen removal in soybean grains at harvest may exceed biological N2 fixation, particularly if grain yields are as high as typically achieved on "Terra Rossa" soils of Eastern Paraguay. Applying N fertilizer or coating seeds with rhizobial inoculants that enhance nodulation may represent a way of balancing the N budget. However, the effects of such treatments appear to be highly site-specific. The objective of this study was to examine the effects of N application (N) and rhizobial inoculation (I) on nodulation, N accumulation and soybean yields in Eastern Paraguay. Field experiments were conducted in two consecutive soybean seasons. Dry conditions in the first year delayed sowing and reduced plant number m-2 and pod number plant-1. Grain yields were generally below 2 t ha-1 but the +N+I treatment increased yields by about 75%. In the second year favorable conditions resulted in yields of around 4 t ha-1 and the treatments had no effect. Nitrogen accumulation was higher in the first year and could therefore not explain the observed yield differences between years and treatment combinations. The positive effect of the +N+I treatment in year one was associated with a more rapid root growth which could have reduced susceptibility to intermittent drought stress. Nodule biomass decreased between flowering and pod setting stages in the +I treatment whereas further increases in nodule biomass in the -I treatment may have led to competition for assimilates between nodules and developing pods. Based on these preliminary results we conclude that N application and seed inoculation can offer short-term benefits in unfavorable years without negative effects on yield in favorable years.
Resumo:
Shoot biomass is considered a relevant component for crop yield, but relationships between biological productivity and grain yield in legume crops are usually difficult to establish. Two field experiments were carried out to investigate the relationships between grain yield, biomass production and N and P accumulation at reproductive stages of common bean (Phaseolus vulgaris) cultivars. Nine and 18 cultivars were grown on 16 m² plots in 1998 and 1999, respectively, with four replications. Crop biomass was sampled at four growth stages (flowering R6, pod setting R7, beginning of pod filling R8, and mid-pod filling R8.5), grain yield was measured at maturity, and N and P concentrations were determined in plant tissues. In both years, bean cultivars differed in grain yield, in root mass at R6 and R7 stages, and in shoot mass at R6 and R8.5, whereas at R7 and R8 differences in shoot mass were significant in 1998 only. In both years, grain yield did not correlate with shoot mass at R6 and R7 and with root mass at R6. Grain yield correlated with shoot mass at R8 in 1999 but not in 1998, with shoot mass at R8.5 and with root mass at R7 in both years. Path coefficient analysis indicated that shoot mass at R8.5 had a direct effect on grain yield in both years, that root mass at R7 had a direct effect on grain yield in 1998, and that in 1999 the amounts of N and P in shoots at R8.5 had indirect effects on grain yield via shoot mass at R8.5. A combined analysis of both experiments revealed that biomass accumulation, N and P in shoots at R6 and R7 as well as root mass at R6 were similar in both years. In 1998 however bean accumulated more root mass at R7 and more biomass and N and P in shoots at R8 and R8.5, resulting in a 57 % higher grain yield in 1998. This indicates that grain yield of different common bean cultivars is not intrinsically associated with vegetative vigor at flowering and that mechanisms during pod filling can strongly influence the final crop yield. The establishment of a profuse root system during pod setting, associated with the continuous N and P acquisition during early pod filling, seems to be relevant for higher grain yields of common bean.
Resumo:
The use of green manure may contribute to reduce soil erosion and increase the soil organic matter content and N availability in coffee plantations in the Zona da Mata, State of Minas Gerais, in Southeastern Brazil. The potential of four legumes (A. pintoi, C. mucunoides, S. aterrimum and S. guianensis) to produce above-ground biomass, accumulate nutrients and mineralize N was studied in two coffee plantations of subsistence farmers under different climate conditions. The biomass production of C. mucunoides was influenced by the shade of the coffee plantation. C. mucunoides tended to mineralize more N than the other legumes due to the low polyphenol content and polyphenol/N ratio. In the first year, the crop establishment of A. pintoi in the area took longer than of the other legumes, resulting in lower biomass production and N2 fixation. In the long term, cellulose was the main factor controlling N mineralization. The biochemical characteristics, nutrient accumulation and biomass production of the legumes were greatly influenced by the altitude and position of the area relative to the sun.
Resumo:
Selostus: Lajikkeen, typpilannoitustason ja maalajin vaikutus ohran ruokinnalliseen arvoon lihasioilla
Resumo:
A novel two-component system, CbrA-CbrB, was discovered in Pseudomonas aeruginosa; cbrA and cbrB mutants of strain PAO were found to be unable to use several amino acids (such as arginine, histidine and proline), polyamines and agmatine as sole carbon and nitrogen sources. These mutants were also unable to use, or used poorly, many other carbon sources, including mannitol, glucose, pyruvate and citrate. A 7 kb EcoRI fragment carrying the cbrA and cbrB genes was cloned and sequenced. The cbrA and cbrB genes encode a sensor/histidine kinase (Mr 108 379, 983 residues) and a cognate response regulator (Mr 52 254, 478 residues) respectively. The amino-terminal half (490 residues) of CbrA appears to be a sensor membrane domain, as predicted by 12 possible transmembrane helices, whereas the carboxy-terminal part shares homology with the histidine kinases of the NtrB family. The CbrB response regulator shows similarity to the NtrC family members. Complementation and primer extension experiments indicated that cbrA and cbrB are transcribed from separate promoters. In cbrA or cbrB mutants, as well as in the allelic argR9901 and argR9902 mutants, the aot-argR operon was not induced by arginine, indicating an essential role for this two-component system in the expression of the ArgR-dependent catabolic pathways, including the aruCFGDB operon specifying the major aerobic arginine catabolic pathway. The histidine catabolic enzyme histidase was not expressed in cbrAB mutants, even in the presence of histidine. In contrast, proline dehydrogenase, responsible for proline utilization (Pru), was expressed in a cbrB mutant at a level comparable with that of the wild-type strain. When succinate or other C4-dicarboxylates were added to proline medium at 1 mM, the cbrB mutant was restored to a Pru+ phenotype. Such a succinate-dependent Pru+ property was almost abolished by 20 mM ammonia. In conclusion, the CbrA-CbrB system controls the expression of several catabolic pathways and, perhaps together with the NtrB-NtrC system, appears to ensure the intracellular carbon: nitrogen balance in P. aeruginosa.
Resumo:
The oxidation of GaAs and AlGaAs targets subjected to O2+ bombardment has been analyzed, using in situ x¿ray photoelectron spectroscopy, as a function of time until steady state is reached. The oxides formed by the O2+ bombardment have been characterized in terms of composition and binding energy. A strong energy and angular dependence for the oxidation of As relative to Ga is found. Low energies as well as near normal angles of incidence favor the oxidation of As. The difference between Ga and As can be explained in terms of the formation enthalpy for the oxide and the excess supply of oxygen. In an AlGaAs target the Al is very quickly completely oxidized irrespective of the experimental conditions. The steady state composition of the altered layers show in all cases a preferential removal of As.
Resumo:
Nitrogen doped silicon (NIDOS) films have been deposited by low-pressure chemical vapor deposition from silane SiH4 and ammonia NH3 at high temperature (750°C) and the influences of the NH3/SiH4 gas ratio on the films deposition rate, refractive index, stoichiometry, microstructure, electrical conductivity, and thermomechanical stress are studied. The chemical species derived from silylene SiH2 into the gaseous phase are shown to be responsible for the deposition of NIDOS and/or (silicon rich) silicon nitride. The competition between these two deposition phenomena leads finally to very high deposition rates (100 nm/min) for low NH3/SiH4 gas ratio (R¿0.1). Moreover, complex variations of NIDOS film properties are evidenced and related to the dual behavior of the nitrogen atom into silicon, either n-type substitutional impurity or insulative intersticial impurity, according to the Si¿N atomic bound. Finally, the use of NIDOS deposition for the realization of microelectromechanical systems is investigated.
Resumo:
Few studies on sugar cane have evaluated the root system of the crop, in spite of its importance. This is mainly due to the difficulty of evaluation and high variability of results. The objective of this study was to develop an evaluation method of the cane root system by means of probes so as to evaluate the mass, distribution and metabolically active roots related to N fertilization at planting. For this purpose, an experiment was conducted in an Arenic Kandiustults with medium texture in Jaboticabal/SP, in a randomized block design with four replications and four treatments: control (without N) and 40, 80 and 120 kg ha-1 of N applied in the form of urea in the planting furrow of the cane variety SP81 3250. One week before harvest, a urea-15N solution was applied at the cane stalk base to detect active metabolism in the root system. Trenches of 1.5 m length and 0.6 m depth were opened between two sugar cane rows for root sampling by two methods: monoliths (0.3, 0.2 and 0.15 m wide, deep and long respectively) taken from the trench wall and by probe (internal diameter 0.055 m). For each method, 15 samples per plot were collected. The roots were separated from the soil in a sieve (2 mm mesh), oven-dried (at 65 ºC) and the dry matter was measured. Root sampling by probes resulted in root mass that did not differ from the evaluation in monoliths, indicating that this evaluation method may be used for sugar cane root mass, although neither the root distribution in the soil profile nor the rhizome mass were efficiently evaluated, due to the small sample volume. Nitrogen fertilization at planting did not result in a greater root accumulation in the sugar cane plant, but caused changes in the distribution of the root system in the soil. The absence of N fertilization led to a better root distribution in the soil profile, with 50, 34 and 16 % in the 0-0.2, 0.2-0.4 and 0.4-0.6 m layers, respectively; in the fertilized treatments the roots were concentrated in the surface layer, with on average 70, 17 and 13 % for the same layers. The metabolically active roots were concentrated in the center of the cane stool, amounting to 40 % of the total root mass, regardless of N fertilization (application of 120 kg ha-1 N or without N).
Resumo:
Nitrogen incorporates into Fe thin films during reactively sputtered TiN capping layer deposition. The influence that this nitrogen incorporation has both on the structure and magnetic properties is discussed for a series of Fe~001! thin films grown at different temperatures. A higher nitrogen content is accompanied by distortion in the Fe lattice and by reduction in the Fe magnetization saturation as well as in the effective anisotropy constant, K. The reduction of K brings as a consequence lowering in the coercive field with respect to equivalent Fe films with no nitrogen present.