932 resultados para Nickel - Metallurgy
Resumo:
Zn7Sb2O12 is known to adopt an inverse spinel crystal structure, in which Zn2+ occupies the eight tetrahedral positions and Sb5+ and Zn2+ randomly occupy the 16 octahedral positions. Samples of Zn7-xNixSb2O12 (X = 0, 1, 2, 3, and 4) were synthesized using a modified polymeric precursor method, known as the Pechini method. The crystal structure of the powders was characterized by Rietveld refinement with X-ray diffraction data. The results show that for X = 0, 1, and 2 Ni substitutes for Zn2+ in the octahedral sites, and that for X = 3 and 4 it is assumed that Ni2+ replaces Zn2+ ions in both the octahedral and tetrahedral positions. It is also observed for x = 3 and 4 the formation of two spinel phases. (C) 2003 International Centre for Diffraction Data.
Resumo:
The reaction of TlTp' (Tp' = HB(3-mesitylpyrazolyl)(3)(-) (Tp(Ms)), HB(3-mesitylpyrazolyl)(2)(5-mesitylpyrazolyl)(-) (Tp(Ms)*)) with NiCl(2).6H(2)O affords Tp(Ms)NiCl (1) and Tp(Ms)*NiCl (2) in good yield. The compound 2 undergoes an isomerization process to form [{Tp(Ms)**}NiCl](2) (3) (Tp(Ms)** = HB(5-mesitylpyrazolyl)(2)(3-mesitylpyrazolyl)(-)) in 68% yield. Treatment of the tris(pyrazolyl)-borate nickel compounds 1 and 2 with alkylaluminum cocatalysts such as methylalumoxane (MAO) and trimethylaluminum (TMA) in toluene generates active catalysts for ethylene oligomerization. The compound 1 shows turnover frequencies in the range of (2.2-43.1) x 10(3) h(-1). Oligomerization reaction conditions can be adjusted that lead to selectivities as high as 81% for butene-1.
Resumo:
Throughout the world, biomonitoring has become the standard for assessing exposure of individuals to toxic elements as well as for responding to serious environmental public health problems. However, extensive biomonitoring surveys require rapid and simple analytical methods. Thus, a simple and high-throughput method is proposed for the determination of arsenic (As), cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and selenium (Se) in blood samples by using inductively coupled plasma-mass spectrometry (ICP-MS). Prior to analysis, 200 l of blood samples was mixed with 500 l of 10% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 10 min, and subsequently diluted to 10 ml with a solution containing 0.05% w/v ethylenediamine tetraacetic acid (EDTA) + 0.005% v/v Triton X-100. After that, samples were directly analyzed by ICP-MS (ELAN DRC II). Rhodium was selected as an internal standard with matrix-matching calibration. Method detection limits were 0.08, 0.04, 0.5, 0.09, 0.12, 0.04, and 0.1 g//L for As, Cd, Cu, Mn, Ni, Pb, and Se, respectively. Validation data are provided based on the analysis of blood samples from the trace elements inter-\comparison program operated by the Institut National de Sante Publique du Quebec, Canada. Additional validation was provided by the analysis of human blood samples by the proposed method and by using electrothermal atomic absorption spectrometry (ETAAS). The method was subsequently applied for the estimation of background metal blood values in the Brazilian population. In general, the mean concentrations of As, Cd, Cu, Mn, Ni, Pb, and Se in blood were 1.1, 0.4, 890, 9.6, 2.1, 65.4, and 89.3 g/L, respectively, and are in agreement with other global populations. Influences of age, gender, smoking habits, alcohol consumption, and geographical variation on the values were also considered. Smoking habits influenced the levels of Cd in blood. The levels of Cu, Mn, and Pb were significantly correlated with gender, whereas Cu and Pb were significantly correlated with age. There were also interesting differences in Mn and Se levels in the population living in the north of Brazil compared to the south.
Resumo:
The nature of the protective film formed by benzotriazole (BTAH) on the surface of the 90/10 CuNi alloy in deaerated 0.5 mol L-1 H2SO4 solution containing Fe(III) ions as oxidant was investigated by weight-loss, calorimetric measurements, and by surface-enhanced Raman spectroscopy (SERS). The SERS measurements show that the protective film is composed by the [Cu(I)BTA](n), polymeric complex and that the BTAH molecules are also adsorbed on the electrode surface. A modification of the BET isotherm for adsorption of gases ill solids is proposed to describe the experimental results obtained from weight-loss experiments that suggest an adsorption in multilayers. Electrochemical studies of copper and nickel in 0.5 mol L-1 H2SO4 in presence and absence of BTAH have also been made as an aid to interpret the results. The calculated adsorption free energy of the cuprous benzotriazolate on the surface of the alloy is in accordance with the value for pure copper. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Changes in activities of Cu-Zn superoxide dismutase (SOD- E.C.1.15.1.1.) and lactate dehydrogenase (LDH- E.C.1.1.1.27.) and levels of copper, total protein, triglycerides, phospholipids and total lipids were investigated in pancreas of rats after intratracheal administration of NiCl2 (8.4 mumol/kg). Nickel chloride induced increased SOD activity in pancreas and erythrocytes. This elevation was related to increased copper and decreased phospholipid content in pancreas of these animals. In conclusion, the ability of an animal to tolerate nickel chloride induced damage was governed by a delicate balance between the generation of cytotoxic agents and the various pancreas defense capabilities.
Resumo:
The rate removal of nickel from the airway was measured in vivo. Removal in vivo was studied by intratracheal injection of nickel chloride solutions. Regardless of time after injection, the lungs and heart retained the greatest concentration of nickel and 40 days after 1.68 mumol administration they were the organs where nickel was still significantly measurable. The slow removal of nickel may indicate the presence of high affinity binding sites in the lung. Nickel can interact with others metals, such as copper and zinc, so that nickel exposure may have public health implications.
Resumo:
The present study was designed to evaluate the metallurgical properties of an experimental, low-cost copper-zinc-aluminum-nickel alloy for dental castings. Some specimens were subjected to heat treatment after induction casting. The extent of corrosion was determined by measuring weight loss of specimens stored in a sodium sulfite solution. In the as-cast specimens, tests demonstrated the presence of three phases: the first consisted of copper-zinc-aluminum, the second was similar but lower in copper and aluminum, and the third consisted of an intermetallic compound of manganese-nickel-phosphorus. After heat treatment, the first phase remained relatively constant, the second was converted to Cu3Al, and the third increased in volume. The weight loss from the as-cast specimens was eight times that of the heat-treated specimens. It was concluded that the heat treatment substantially changed the microstructure and improved the corrosion resistance of the experimental alloy.
Resumo:
The effect of nickel from soluble NiCl2 on Cu-Zn superoxide dismutase (SOD) activity, as well as on rate of nitro blue tetrazolium reduction, was studied in vitro since lipid peroxidation has been implicated in cell damage by nickel insoluble compounds, whose toxicity and carcinogenicity are well established. The physical and chemical nature of nickel compounds is one of the key determinations of its toxicity. Soluble nickel freely enter cells, but is just as readily excreted reducing the opportunity for production of lipid damage. Nickel from NiCl2 strongly activated SOD activity. In vitro addition of nickel chloride to a crude lung preparation altered the KM for SOD without changing the Vmax. Nickel chloride produced increased enzyme affinity to the substrate, because decreased (O2-) concentration that yields half-maximal velocity. The combination of nickel and SOD may contribute to stabilization of the particular conformation of SOD responsible for maximal catalytically activity.
Resumo:
Tetrahedral nickel(0) complexes [NiL4], [Ni(dppe)2] and [Ni(CO)2(SbPh3)2] (L=AsPh3, SbPh3, P(OPh)3, dppe=1,2-bis(diphenylphosphino)ethane) were prepared by reduction of NiCl2·6H2O with NaBH4 under N2 or CO atmosphere in the presence of the ligand. The complex [Ni(SbPh3)4] was also obtained by electrolysis at -1.3 V (Ag/Ag+), under a platinum gauze, of the system NiCl2·6H2O/SbPh3 (molar ratio=1:4). These complexes, both in the solid state and in solution, show an orange emission at room temperature, when excited with UV radiation. A qualitative molecular orbital diagram for the [NiL4] complexes is proposed. Electronic absorption spectra of the complexes show bands near 400 nm assigned as MLCT π*2e←d2t2. A 1A1←3T1 transition is suggested for the emission observed in these systems. Lifetimes in microsecond range were estimated from time-resolved emission spectra. Spectroscopic properties of the free ligands have also been investigated.
Resumo:
The role of air pollution as a health risk factor is of special interest. Numerous toxic pollutants, such as nickel, are being released to the environment as a result of combustion of fossil fuels, crude oil, and coal. Nickel in the atmosphere can be combined with other environmental pollutants, producing various nickel compounds, which have varying animal toxicity. A rat biossay validated for the identification of toxic effects of nickel revealed increased serum activities of total lactate dehydrogenase (LDH) and alanine transaminase (ALT) in rats that received intratracheal injection of Ni2+ in .09% saline solution of NiCl2. The total LDH activity was also increased in the heart, and the isoenzyme pattern showed the LDH1/LDH2 ratio elevated to greater than 1. We conclude that intratracheal administration of nickel induced cardiac and hepatic damage. The development of cardiac and hepatic damage and of increased enzymes' activities was only demonstrated when nickel had accumulated in these tissues, indicating that nickel depot is essential to its toxicity. Intratracheal administration of NiCl2 induced changes in LDH and ALT activities.
Resumo:
Nickel compounds have high potential risk for the health of populations and for this reason their toxic effects should be urgently established. To determine the effect of nickel monosulfide in the muscle at the injection site on pancreatic, hepatic, and osteogenic lesions and the potential therapeutic effect of Cu-Zn superoxide dismutase (SOD), male Wistar rats received single intramuscular injections of nickel monosulfide (NiS - 7 mg Ni2+/Kg). A group of these experimental rats were injected intraperitoneally, with a single weekly dose of SOD covalently linked to polyethylene glycol (SOD-PEG). Rats were sacrificed at 2, 4, 6, and 8 months after Ni2+ injection. Nickel monosulfide produced tumors at the injection site. The increased phospholipid, alanine transaminase (ALT), alkaline phosphatase (ALP), and amylase levels in serum, in absence of SOD-PEG, reflected the toxic effects on pancreatic, hepatic, and osteogenic tissues of rats. SOD activity was increased in serum of rats receiving SOD-PEG throughout the experiment, and no significant difference was observed in biochemical parameters of control and experimental rats in presence of SOD- PEG. Superoxide radical generated by Ni2+ is of primary importance in the development of tumors at the injection site. Superoxide anion (O2 -) is also an important toxic intermediate with respect to hepatic, pancreatic, and osteogenic injury, since SOD-PEG has a potential therapeutic effect.