973 resultados para Nervous System


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peptidergic mechanisms influencing the resistance of the gastrointestinal vascular bed of the estuarine crocodile, Crocodylus porosus, were investigated. The gut was perfused in situ via the mesenteric and the celiac arteries, and the effects of different neuropeptides were tested using bolus injections. Effects on vascular resistance were recorded as changes in inflow pressures. Peptides found in sensory neurons [substance P, neurokinin A, and calcitonin gene-related peptide (CGRP)] all caused significant relaxation of the celiac vascular bed, as did vasoactive intestinal polypeptide (VIP), another well-known vasodilator. Except for VIP, the peptides also induced transitory gut contractions. Somatostatin and neuropeptide Y (NPY), which coexist in adrenergic neurons of the C. porosus, induced vasoconstriction in the celiac vascular bed without affecting the gut motility. Galanin caused vasoconstriction and occasionally activated the gut wall. To elucidate direct effects on individual vessels, the different peptides were tested on isolated ring preparations of the mesenteric and celiac arteries. Only CGRP and VIP relaxed the epinephrine-precontracted celiac artery, whereas the effects on the mesenteric artery were variable. Somatostatin and NPY did not affect the resting tonus of these vessels, but somatostatin potentiated the epinephrine-induced contraction of the celiac artery. Immunohistochemistry revealed the existence and localization of the above-mentioned peptides in nerve fibers innervating vessels of different sizes in the gut region. These data support the hypothesis of an important role for neuropeptides in the control of the vascular bed of the gastrointestinal tract in C. porosus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the adult male Sprague-Dawley rat, a species commonly used to study tolerance to the antinociceptive effects of morphine, approximate to 10% of the morphine dose is metabolized to normorphine-3-glucuronide (NM3G). In contrast, NM3G is a relatively minor metabolite of morphine in human urine reportedly accounting for approximate to 1% of the morphine dose. To date, the pharmacology of NM3G has been poorly characterized. Therefore, our studies were designed to determine whether the intrinsic pharmacology of NM3G is similar to that of morphine-3-glucuronide (M3G), the major metabolite of morphine, which has been shown to be a potent central nervous system (CNS) excitant and to attenuate the intrinsic antinociceptive effects of morphine in rats. The CNS excitatory potency of NM3G was found to be approximately half that of M3G, inducing convulsions in rats at intracerebroventricular (i.c.v.) doses of greater than or equal to 16.8 nmol. When administered before morphine (70 nmol i.c.v.), NM3G (8.9 nmol i.c.v.) attenuated antinociception for up to 2 hr, but when administered after morphine, no significant attenuation of morphine antinociception was observed. Thus, after i.c.v. administration, NM3G like M3G, is a potent CNS excitant and antianalgesic in the rat. NM3G may therefore play a role in the development of tolerance to the antinociceptive effects of morphine in the rat as has been proposed previously for M3G.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In vertebrates, excess all-trans retinoic acid (RA) applied during axis formation leads to the apparent truncation of anterior structures. In this study we sought to determine the type of defects caused by ectopic RA on the development of the ascidian Herdmania curvata. We demonstrate that H. curvata embryos cultured in the presence of RA develop into larvae whose trunks are shortened and superficially resemble those of early metamorphosing postlarvae. Despite RA-treated larvae lacking papillar structures they respond normally to natural cues that induce metamorphosis, indicating that chemosensory functionality previously mapped to the most anterior region of normal larvae is unaffected by RA. Excess RA applied during postlarval development leads to a graded loss of the juvenile pharynx, apparently by respecifying anterior endoderm to a more posterior fate. This structure is considered homologous to the gill slits of amphioxus. which are also lost upon RA treatment. This suggests that RA may have had a role in the development of the pharynx of the ancestral chordate and that this function has been maintained in ascidians and cephalochordates and lost in vertebrates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To investigate a proposed model in which manipulative therapy produces a treatment-specific initial hypoalgesic and sympathoexcitatory effect by activating a descending pain inhibitory system. The a priori hypothesis tested was that manipulative therapy produces mechanical hypoalgesia and sympatho-excitation beyond that produced by placebo or control. Furthermore, these effects would be correlated, thus supporting the proposed model. Design: A randomized, double-blind, placebo-controlled, repeated-measures study of the initial effect of treatment. Setting: Clinical neurophysiology laboratory. Subjects: Twenty-four subjects (13 women and 11 men; mean age, 49 yr) with chronic lateral epicondylalgia (average duration, 6.2 months). Intervention: Cervical spine lateral glide oscillatory manipulation, placebo and control. Outcome Measures: Pressure pain threshold, thermal pain threshold, pain-free grip strength test, upper limb tension test 2b, skin conductance, pileous and glabrous skin temperature and blood flux. Results: Treatment produced hypoalgesic and sympathoexcitatory changes significantly grater than those of placebo and control (p < .03). Confirmatory factor-analysis modeling, which was performed on the pain-related measures and the indicators of sympathetic nervous system function, demonstrated a significant correlation (r = .82) between the latencies of manipulation-induced hypoalgesia and sympathoexcitation. The Lagrange Multiplier test and Wald test indicated that the two latent factors parsimoniously and appropriately represented their observed variables. Conclusions: Manual therapy produces a treatment-specific initial hypoalgesic and sympathoexcitatory effect beyond that of placebo or control. The strong correlation between hypoalgesic and sympathoexcitatory effects suggests that a central control mechanism might be activated by manipulative therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chondroitin sulfate proteoglycans display both inhibitory and stimulatory effects on cell adhesion and neurite outgrowth in vitro. The functional activity of these proteoglycans appears to be context specific and dependent on the presence of different chondroitin sulfate-binding molecules. Little is known about the role of chondroitin sulfate proteoglycans in the growth and guidance of axons in vivo. To address this question, we examined the effects of exogenous soluble chondroitin sulfates on the growth and guidance of axons arising from a subpopulation of neurons in the vertebrate brain which express NOC-2, a novel glycoform of the neural cell adhesion molecule N-CAM. Intact brains of stage 28 Xenopus embryos were unilaterally exposed to medium containing soluble exogenous chondroitin sulfates. When exposed to chondroitin sulfate, NOC-2(+) axons within the tract of the postoptic commissure failed to follow their normal trajectory across the ventral midline via the ventral commissure in the midbrain. Instead, these axons either stalled or grew into the dorsal midbrain or continued growing longitudinally within the ventral longitudinal tract. These findings suggest that chondroitin sulfate proteoglycans indirectly modulate the growth and guidance of a subpopulation of forebrain axons by regulating either matrix-bound or cell surface cues at specific choice points within the developing vertebrate brain. (C) 1998 Academic Press.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spectrum of protein tyrosine phosphatases (PTPs) expressed in bone marrow-derived murine macrophages (BMMs) was examined using reverse transcriptase-polymerase chain reaction. Ten different PTP cDNAs were isolated and in this study we focus on mDEP-1, a type III receptor PTP. Three mDEP-1 transcripts were expressed in primary macrophages and macrophage cell lines and were induced during macrophage differentiation of M1 myeloid leukemia cells. A valiant mRNA Tvas identified that encodes an alternate carboxyl-terminus and 3' UTR. The expression of mDEP-1 was down-regulated by CSF-1 (macrophage colony-stimulating factor) and up-regulated by bacterial lipopolysaccharide, an important physiological regulator of macrophage function that opposes CSF-1 action. Whole mount irt situ hybridization, and immunolocalization of the protein, confirmed that mDEP-1 is expressed by a subset of embryonic macrophages in the liver and mesenchyme. mDEP-1 was also detected in the eye and peripheral nervous system of the developing embryo. Attempts to express mDEP-1 constitutively in the macrophage cell line RAW264 were unsuccessful, with results suggesting that the gene product inhibits cell proliferation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We developed a system for time-lapse observation of identified neurons in the central nervous system (CNS) of the Drosophila embryo. Using this system, we characterize the dynamics of filopodia and axon growth of the motorneuron RP2 as it navigates anteriorly through the CNS and then laterally along the intersegmental nerve (ISN) into the periphery. We find that both axonal extension and turning occur primarily through the process of filopodial dilation. In addition, we used the GAL4-UAS system to express the fusion protein Tau-GFP in a subset of neurons, allowing us to correlate RP2's patterns of growth with a subset of axons in its environment. In particular, we show that RP2's sharp lateral turn is coincident with the nascent ISN. (C) 1998 John Wiley & Sons, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previously we described activating mutations of h beta(c), the common signaling subunit of the receptors for the hematopoietic and inflammatory cytokines, GM-CSF, IL-3, and IL-5. The activated mutant, h beta(c)FI Delta, is able to confer growth factor-independent proliferation on the murine myeloid cell line FDC-P1, and on primary committed myeloid progenitors. We have used this activating mutation to study the effects of chronic cytokine receptor stimulation. Transgenic mice were produced carrying the h beta(c)FI Delta cDNA linked to the constitutive promoter derived from the phosphoglycerate kinase gene, PGK-1. Transgene expression was demonstrated in several tissues and functional activity of the mutant receptor was confirmed in hematopoietic tissues by the presence of granulocyte macrophage and macrophage colony-forming cells (CFU-GM and CFU-M) in the absence of added cytokines. All transgenic mice display a myeloproliferative disorder characterized by splenomegaly, erythrocytosis, and granulocytic and megakaryocytic hyperplasia. This disorder resembles the human disease polycythemia vera, suggesting that activating mutations in h beta(c) may play a role in the pathogenesis of this myeloproliferative disorder. In addition, these transgenic mice develop a sporadic, progressive neurological disease and display bilateral, symmetrical foci of necrosis in the white matter of brain stem associated with an accumulation of macrophages. Thus, chronic h beta(c) activation has the potential to contribute to pathological events in the central nervous system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Twenty-three patients treated with intracerebroventricular (ICV) morphine in this study not only obtained excellent pain relief without rapid increases in dose, but also experienced a reduction in morphine-related side effects. By 24 h after initiation of ICV morphine, the mean trough cerebrospinal fluid (CSF) morphine concentration (approximately 20 mu M) was 50-fold higher than the baseline concentration (approximately 0.4 mu M), and the CSF concentration of morphine-6-glucuronide (M6G) was undetectable (

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The activities of conantokin-G (con-G), conantokin-T (con-T), and several novel analogues have been studied using polyamine enhancement of [H-3]MK-801 binding to human glutamate-N-methyl-D-aspartate (NMDA) receptors, and their structures have been examined using CD and H-1 NMR spectroscopy. The potencies of con-G[A7], con-G, and con-T as noncompetitive inhibitors of spermine-enhanced [H-3]MK-801 binding to NMDA receptor obtained from human brain tissue are similar to those obtained using rat brain tissue. The secondary structure and activity of con-G are found to be highly sensitive to amino acid substitution and modification. NMR chemical shift data indicate that con-G, con-G[D8,D17], and con-G[A7] have similar conformations in the presence of Ca2+. This consists of a helix for residues 2-16, which is kinked in the vicinity of Gla10. This is confirmed by 3D structure calculations on con-G[A7]. Restraining this helix in a linear form (i.e., con-G[A7,E10-K13]) results in a minor reduction in potency. Incorporation of a 7-10 salt-bridge replacement (con-G[K7-E10]) prevents helix formation in aqueous solution and produces a peptide with low potency. Peptides with the Leu5-Tyr5 substitution also have low potencies (con-G[Y5,A7] and con-G[Y5,K7]) indicating that Leu5 in con-G is important for full antagonist behavior. We have also shown that the Gla-Ala7 substitution increases potency, whereas the Gla-Lys7 substitution has no effect. Con-G and con-G[K7] both exhibit selectivity between NMDA subtypes from mid-frontal and superior temporal gyri, but not between sensorimotor and mid-frontal gyri. Asn8 and/or Asn17 appear to be important for the ability of con-G to function as an inhibitor of polyamine-stimulated [3H]MK-801 binding, but not in maintaining secondary structure. The presence of Ca2+ does not increase the potencies of con-G and con-T for NMDA receptors but does stabilize the helical structures of con-G, con-G[D8,D17], and, to a lesser extent, con-G[A7]. The NMR data support the existence of at least two independent Ca2+-chelating sites in con-G, one involving Gla7 and possibly Gla3 and the other likely to involve Gla10 and/or Gla14.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymerase chain reaction (PCR)-based differential display was used to screen for alterations in gene expression in the mesolimbic system of the human alcoholic brain. Total RNA was extracted from the nucleus accumbens of five alcoholic and five control brains. A selected subpopulation of mRNA was reverse-transcribed to cDNA and amplified by PCR. A differentially expressed cDNA fragment was recovered, cloned, and sequenced. Full sequence analysis of this 467 bp fragment revealed 98.2% homology with the human mitochondrial 12S rRNA gene. Dot-blot analysis showed increased expression of this gem in nucleus accumbens and hippocampus, but not in the superior frontal cortex, primary motor cortex, caudate, and pallidus/putamen In a total of eight human alcoholic brains, compared with seven control brains. A similar increased expression was observed by dot-blot analysis, using RNA from the cerebral cortex of rats chronically treated with alcohol vapor. Hybridization of a 16S rRNA oligonucleotide probe indicated that the expression of both rRNAs genes was significantly increased in nucleus accumbens. These results indicate that chronic alcohol consumption induces alteration in expression of mitochondrial genes in selected brain regions. The altered gene expression may reflect mitochondrial dysfunction In the alcohol-affected brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES: To simplify the practice of stereotactic surgery by using an original method, apparatus, and solid anatomic replica for trajectory planning and to validate the method and apparatus in a laboratory and clinical trial. METHODS: The patient is marked with fiducials and scanned by using computed tomography or magnetic resonance imaging. The three-dimensional data are converted to a format acceptable to stereolithography. Stereolithography uses a laser to polymerize photosensitive resin into a solid plastic model (biomodel). Stereolithography can replicate brood vessels, soft tissue, tumor, and bone accurately (

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was designed to determine in rats whether morphine-3-glucuronide (M3G) produces its neuro-excitatory effects most potently in the ventral hippocampus (as has been reported previously for subanalgesic doses of opioid peptides). Guide cannulae were implanted into one of seven regions of the rat brain: lateral ventricle; ventral, CA1 and CA2-CA3 regions of the hippocampus; amygdala; striatum or cortex. After a 7 day recovery period, rats received intracerebral injections of (i) M3G (1.1 or 11 nmol) (ii) DADLE ([D-Ala(2),D-Leu(5)]enkephalin), (45 nmol, positive controls) or (iii) vehicle (deionised water), and behavioral excitation was quantified over 80 min. High-dose M3G (11 nmol) evoked behavioral excitation in all brain regions but the onset, severity and duration of these effects varied considerably among brain regions. By contrast, low-dose M3G (1.1 nmol) evoked excitatory behaviors only when administered into the ventral hippocampus and the amygdala, with the most potent effects being observed in the ventral hippocampus. Prior administration of the nonselective opioid antagonists, naloxone and beta-funaltrexamine into the ventral hippocampus, markedly attenuated low-dose M3G's excitatory effects but did not significantly alter levels of excitation evoked by high-dose M3G. Naloxone given 10 min after M3G (1.1 or 11 nmol) did not significantly attenuate behavioral excitation. Thus, M3G's excitatory behavioral effects occur most potently in the ventral hippocampus as reported previously for subanalgesic doses of opioid peptides, and appear to be mediated through at least two mechanisms, one possibly involving excitatory opioid receptors and the other, non-opioid receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The olfactory neuroepithelium is a highly plastic region of the nervous system that undergoes continual turnover of primary olfactory neurons throughout life. The mechanisms responsible for persistent growth and guidance of primary olfactory axons along the olfactory nerve are unknown. In the present study, we used antibodies against the Eph-related receptor, EphA5, to localise EphA5, and recombinant EDhA5-IgG fusion protein to localise its ligands. We found that although both EphA5 and its ligands were both expressed by primary olfactory neurons within the embryonic olfactory nerve pathway, there was no graded or complementary expression pattern. In contrast, the expression patterns altered postnatally such that primary olfactory neurons expressed the ligands, whereas the second-order olfactory neurons, the mitral cells, expressed EphA5. The role of EphA5 was analysed by blocking EphA5-ligand interactions in explant cultures of olfactory neuroepithelium using anti-EphA5 antibodies and recombinant EphA5. These perturbations reduced neurite outgrowth from explant cultures and suggest that intrafascicular axon repulsion may serve to limit adhesion and optimise conditions for axon growth. (C) 2000 Wiley-Liss, Inc.