967 resultados para Natural language techniques, Semantic spaces, Random projection, Documents


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uno degli obiettivi più ambizioni e interessanti dell'informatica, specialmente nel campo dell'intelligenza artificiale, consiste nel raggiungere la capacità di far ragionare un computer in modo simile a come farebbe un essere umano. I più recenti successi nell'ambito delle reti neurali profonde, specialmente nel campo dell'elaborazione del testo in linguaggio naturale, hanno incentivato lo studio di nuove tecniche per affrontare tale problema, a cominciare dal ragionamento deduttivo, la forma più semplice e lineare di ragionamento logico. La domanda fondamentale alla base di questa tesi è infatti la seguente: in che modo una rete neurale basata sull'architettura Transformer può essere impiegata per avanzare lo stato dell'arte nell'ambito del ragionamento deduttivo in linguaggio naturale? Nella prima parte di questo lavoro presento uno studio approfondito di alcune tecnologie recenti che hanno affrontato questo problema con intuizioni vincenti. Da questa analisi emerge come particolarmente efficace l'integrazione delle reti neurali con tecniche simboliche più tradizionali. Nella seconda parte propongo un focus sull'architettura ProofWriter, che ha il pregio di essere relativamente semplice e intuitiva pur presentando prestazioni in linea con quelle dei concorrenti. Questo approfondimento mette in luce la capacità dei modelli T5, con il supporto del framework HuggingFace, di produrre più risposte alternative, tra cui è poi possibile cercare esternamente quella corretta. Nella terza e ultima parte fornisco un prototipo che mostra come si può impiegare tale tecnica per arricchire i sistemi tipo ProofWriter con approcci simbolici basati su nozioni linguistiche, conoscenze specifiche sul dominio applicativo o semplice buonsenso. Ciò che ne risulta è un significativo miglioramento dell'accuratezza rispetto al ProofWriter originale, ma soprattutto la dimostrazione che è possibile sfruttare tale capacità dei modelli T5 per migliorarne le prestazioni.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SmartPantry `e un applicazione per Android che si pone come obiettivo quello di rendere semplice e pratica la gestione virtuale delle dispense degli utenti. Oltre a questo implementa un recommender system dedicato al suggerimento di ricette adatte ai prodotti contenuti nella dispensa, per farlo l’algoritmo si avvale della distanza di Damerau-Levenshtein per eseguire Natural Language Processing in modo tale da interpretare gli ingredienti delle dispense degli utenti e poterli mappare ad una collezione di ingredienti mantenuti in un database remoto. All’interno di questo elaborato andremo ad analizzare i dettagli di progetta�zione ed implementativi di SmartPantry e degli algoritmi che la sostengono ponendo particolare attenzione agli aspetti qualitativi degli algoritmi di NLP e raccomandazione raccogliendo dati sufficienti a trarre conclusioni oggettive sulla precisione ed efficacia dei suddetti. Nell’ultimo capitolo vedremo come nonostante la presenza di margini di miglioramento, come versione 1.0, gli algoritmi abbiano restituito dei risultati pi`u che discreti

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sempre più negli ultimi anni si interagisce con i chatbot, software che simulano una conversazione con un essere umano utilizzando il linguaggio naturale. L’elaborato di tesi mira ad uno studio più approfondito della tematica, a partire da come tale tecnologia si è evoluta nel corso degli anni. Si procede analizzando le principali applicazioni dei bot, soffermandosi anche sui cambiamenti apportati dalla pandemia di Covid-19, ed evidenziando le principali ragioni che portano aziende e singoli al loro utilizzo. Inoltre, vengono descritti i diversi tipi di bot esistenti e viene analizzato il Natural Language Processing, ramo dell’Intelligenza Artificiale che mira alla comprensione del linguaggio naturale. Nei capitoli successivi viene descritto il progetto CartBot, un’applicazione di chat mobile per l’e-grocery, implementata come un chatbot che guida il cliente all’acquisto della spesa online. Vengono descritte le tecnologie utilizzate, con particolare riferimento al software di Google Dialogflow, che permette di sviluppare bot; inoltre viene analizzata come è stata effettuata la progettazione, sia lato front-end che back-end, allegando il flowchart, un diagramma di flusso realizzato per definire la sequenza di azioni e passaggi richiesti dal bot per effettuare l’acquisto. Infine, sono descritte le varie sottosezioni di CartBot, che riguardano la visualizzazione dei prodotti e il completamento dell’ordine, allegando screenshot dell’interfaccia finale ottenuta e inserendo il codice di alcune funzioni rilevanti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il lavoro di tesi presentato è nato da una collaborazione con il Politecnico di Macao, i referenti sono: Prof. Rita Tse, Prof. Marcus Im e Prof. Su-Kit Tang. L'obiettivo consiste nella creazione di un modello di traduzione automatica italiano-cinese e nell'osservarne il comportamento, al fine di determinare se sia o meno possibile l'impresa. Il trattato approfondisce l'argomento noto come Neural Language Processing (NLP), rientrando dunque nell'ambito delle traduzioni automatiche. Sono servizi che, attraverso l'ausilio dell'intelligenza artificiale sono in grado di elaborare il linguaggio naturale, per poi interpretarlo e tradurlo. NLP è una branca dell'informatica che unisce: computer science, intelligenza artificiale e studio di lingue. Dal punto di vista della ricerca, le più grandi sfide in questo ambito coinvolgono: il riconoscimento vocale (speech-recognition), comprensione del testo (natural-language understanding) e infine la generazione automatica di testo (natural-language generation). Lo stato dell'arte attuale è stato definito dall'articolo "Attention is all you need" \cite{vaswani2017attention}, presentato nel 2017 a partire da una collaborazione di ricercatori della Cornell University.\\ I modelli di traduzione automatica più noti ed utilizzati al momento sono i Neural Machine Translators (NMT), ovvero modelli che attraverso le reti neurali artificiali profonde, sono in grado effettuare traduzioni o predizioni. La qualità delle traduzioni è particolarmente buona, tanto da arrivare quasi a raggiungere la qualità di una traduzione umana. Il lavoro infatti si concentrerà largamente sullo studio e utilizzo di NMT, allo scopo di proporre un modello funzionale e che sia in grado di performare al meglio nelle traduzioni da italiano a cinese e viceversa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo elaborato viene trattata l’analisi del problema di soft labeling applicato alla multi-document summarization, in particolare vengono testate varie tecniche per estrarre frasi rilevanti dai documenti presi in dettaglio, al fine di fornire al modello di summarization quelle di maggior rilievo e più informative per il riassunto da generare. Questo problema nasce per far fronte ai limiti che presentano i modelli di summarization attualmente a disposizione, che possono processare un numero limitato di frasi; sorge quindi la necessità di filtrare le informazioni più rilevanti quando il lavoro si applica a documenti lunghi. Al fine di scandire la metrica di importanza, vengono presi come riferimento metodi sintattici, semantici e basati su rappresentazione a grafi AMR. Il dataset preso come riferimento è Multi-LexSum, che include tre granularità di summarization di testi legali. L’analisi in questione si compone quindi della fase di estrazione delle frasi dai documenti, della misurazione delle metriche stabilite e del passaggio al modello stato dell’arte PRIMERA per l’elaborazione del riassunto. Il testo ottenuto viene poi confrontato con il riassunto target già fornito, considerato come ottimale; lavorando in queste condizioni l’obiettivo è di definire soglie ottimali di upper-bound per l’accuratezza delle metriche, che potrebbero ampliare il lavoro ad analisi più dettagliate qualora queste superino lo stato dell’arte attuale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negli ultimi quattro anni la summarization astrattiva è stata protagonista di una evoluzione senza precedenti dettata da nuovi language model neurali, architetture transformer-based, elevati spazi dimensionali, ampi dataset e innovativi task di pre-training. In questo contesto, le strategie di decoding convertono le distribuzioni di probabilità predette da un modello in un testo artificiale, il quale viene composto in modo auto regressivo. Nonostante il loro cruciale impatto sulla qualità dei riassunti inferiti, il ruolo delle strategie di decoding è frequentemente trascurato e sottovalutato. Di fronte all'elevato numero di tecniche e iperparametri, i ricercatori necessitano di operare scelte consapevoli per ottenere risultati più affini agli obiettivi di generazione. Questa tesi propone il primo studio altamente comprensivo sull'efficacia ed efficienza delle strategie di decoding in task di short, long e multi-document abstractive summarization. Diversamente dalle pubblicazioni disponibili in letteratura, la valutazione quantitativa comprende 5 metriche automatiche, analisi temporali e carbon footprint. I risultati ottenuti dimostrano come non vi sia una strategia di decoding dominante, ma come ciascuna possieda delle caratteristiche adatte a task e dataset specifici. I contributi proposti hanno l'obiettivo di neutralizzare il gap di conoscenza attuale e stimolare lo sviluppo di nuove tecniche di decoding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rappresentazione della conoscenza in banca di dati testuali non strutturati in lingua Italiana.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial Intelligence (AI) has substantially influenced numerous disciplines in recent years. Biology, chemistry, and bioinformatics are among them, with significant advances in protein structure prediction, paratope prediction, protein-protein interactions (PPIs), and antibody-antigen interactions. Understanding PPIs is critical since they are responsible for practically everything living and have several uses in vaccines, cancer, immunology, and inflammatory illnesses. Machine Learning (ML) offers enormous potential for effectively simulating antibody-antigen interactions and improving in-silico optimization of therapeutic antibodies for desired features, including binding activity, stability, and low immunogenicity. This research looks at the use of AI algorithms to better understand antibody-antigen interactions, and it further expands and explains several difficulties encountered in the field. Furthermore, we contribute by presenting a method that outperforms existing state-of-the-art strategies in paratope prediction from sequence data.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Information is nowadays a key resource: machine learning and data mining techniques have been developed to extract high-level information from great amounts of data. As most data comes in form of unstructured text in natural languages, research on text mining is currently very active and dealing with practical problems. Among these, text categorization deals with the automatic organization of large quantities of documents in priorly defined taxonomies of topic categories, possibly arranged in large hierarchies. In commonly proposed machine learning approaches, classifiers are automatically trained from pre-labeled documents: they can perform very accurate classification, but often require a consistent training set and notable computational effort. Methods for cross-domain text categorization have been proposed, allowing to leverage a set of labeled documents of one domain to classify those of another one. Most methods use advanced statistical techniques, usually involving tuning of parameters. A first contribution presented here is a method based on nearest centroid classification, where profiles of categories are generated from the known domain and then iteratively adapted to the unknown one. Despite being conceptually simple and having easily tuned parameters, this method achieves state-of-the-art accuracy in most benchmark datasets with fast running times. A second, deeper contribution involves the design of a domain-independent model to distinguish the degree and type of relatedness between arbitrary documents and topics, inferred from the different types of semantic relationships between respective representative words, identified by specific search algorithms. The application of this model is tested on both flat and hierarchical text categorization, where it potentially allows the efficient addition of new categories during classification. Results show that classification accuracy still requires improvements, but models generated from one domain are shown to be effectively able to be reused in a different one.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This PhD thesis contributes to the problem of resource and service discovery in the context of the composable web. In the current web, mashup technologies allow developers reusing services and contents to build new web applications. However, developers face a problem of information flood when searching for appropriate services or resources for their combination. To contribute to overcoming this problem, a framework is defined for the discovery of services and resources. In this framework, three levels are defined for performing discovery at content, discovery and agente levels. The content level involves the information available in web resources. The web follows the Representational Stateless Transfer (REST) architectural style, in which resources are returned as representations from servers to clients. These representations usually employ the HyperText Markup Language (HTML), which, along with Content Style Sheets (CSS), describes the markup employed to render representations in a web browser. Although the use of SemanticWeb standards such as Resource Description Framework (RDF) make this architecture suitable for automatic processes to use the information present in web resources, these standards are too often not employed, so automation must rely on processing HTML. This process, often referred as Screen Scraping in the literature, is the content discovery according to the proposed framework. At this level, discovery rules indicate how the different pieces of data in resources’ representations are mapped onto semantic entities. By processing discovery rules on web resources, semantically described contents can be obtained out of them. The service level involves the operations that can be performed on the web. The current web allows users to perform different tasks such as search, blogging, e-commerce, or social networking. To describe the possible services in RESTful architectures, a high-level feature-oriented service methodology is proposed at this level. This lightweight description framework allows defining service discovery rules to identify operations in interactions with REST resources. The discovery is thus performed by applying discovery rules to contents discovered in REST interactions, in a novel process called service probing. Also, service discovery can be performed by modelling services as contents, i.e., by retrieving Application Programming Interface (API) documentation and API listings in service registries such as ProgrammableWeb. For this, a unified model for composable components in Mashup-Driven Development (MDD) has been defined after the analysis of service repositories from the web. The agent level involves the orchestration of the discovery of services and contents. At this level, agent rules allow to specify behaviours for crawling and executing services, which results in the fulfilment of a high-level goal. Agent rules are plans that allow introspecting the discovered data and services from the web and the knowledge present in service and content discovery rules to anticipate the contents and services to be found on specific resources from the web. By the definition of plans, an agent can be configured to target specific resources. The discovery framework has been evaluated on different scenarios, each one covering different levels of the framework. Contenidos a la Carta project deals with the mashing-up of news from electronic newspapers, and the framework was used for the discovery and extraction of pieces of news from the web. Similarly, in Resulta and VulneraNET projects the discovery of ideas and security knowledge in the web is covered, respectively. The service level is covered in the OMELETTE project, where mashup components such as services and widgets are discovered from component repositories from the web. The agent level is applied to the crawling of services and news in these scenarios, highlighting how the semantic description of rules and extracted data can provide complex behaviours and orchestrations of tasks in the web. The main contributions of the thesis are the unified framework for discovery, which allows configuring agents to perform automated tasks. Also, a scraping ontology has been defined for the construction of mappings for scraping web resources. A novel first-order logic rule induction algorithm is defined for the automated construction and maintenance of these mappings out of the visual information in web resources. Additionally, a common unified model for the discovery of services is defined, which allows sharing service descriptions. Future work comprises the further extension of service probing, resource ranking, the extension of the Scraping Ontology, extensions of the agent model, and contructing a base of discovery rules. Resumen La presente tesis doctoral contribuye al problema de descubrimiento de servicios y recursos en el contexto de la web combinable. En la web actual, las tecnologías de combinación de aplicaciones permiten a los desarrolladores reutilizar servicios y contenidos para construir nuevas aplicaciones web. Pese a todo, los desarrolladores afrontan un problema de saturación de información a la hora de buscar servicios o recursos apropiados para su combinación. Para contribuir a la solución de este problema, se propone un marco de trabajo para el descubrimiento de servicios y recursos. En este marco, se definen tres capas sobre las que se realiza descubrimiento a nivel de contenido, servicio y agente. El nivel de contenido involucra a la información disponible en recursos web. La web sigue el estilo arquitectónico Representational Stateless Transfer (REST), en el que los recursos son devueltos como representaciones por parte de los servidores a los clientes. Estas representaciones normalmente emplean el lenguaje de marcado HyperText Markup Language (HTML), que, unido al estándar Content Style Sheets (CSS), describe el marcado empleado para mostrar representaciones en un navegador web. Aunque el uso de estándares de la web semántica como Resource Description Framework (RDF) hace apta esta arquitectura para su uso por procesos automatizados, estos estándares no son empleados en muchas ocasiones, por lo que cualquier automatización debe basarse en el procesado del marcado HTML. Este proceso, normalmente conocido como Screen Scraping en la literatura, es el descubrimiento de contenidos en el marco de trabajo propuesto. En este nivel, un conjunto de reglas de descubrimiento indican cómo los diferentes datos en las representaciones de recursos se corresponden con entidades semánticas. Al procesar estas reglas sobre recursos web, pueden obtenerse contenidos descritos semánticamente. El nivel de servicio involucra las operaciones que pueden ser llevadas a cabo en la web. Actualmente, los usuarios de la web pueden realizar diversas tareas como búsqueda, blogging, comercio electrónico o redes sociales. Para describir los posibles servicios en arquitecturas REST, se propone en este nivel una metodología de alto nivel para descubrimiento de servicios orientada a funcionalidades. Este marco de descubrimiento ligero permite definir reglas de descubrimiento de servicios para identificar operaciones en interacciones con recursos REST. Este descubrimiento es por tanto llevado a cabo al aplicar las reglas de descubrimiento sobre contenidos descubiertos en interacciones REST, en un nuevo procedimiento llamado sondeo de servicios. Además, el descubrimiento de servicios puede ser llevado a cabo mediante el modelado de servicios como contenidos. Es decir, mediante la recuperación de documentación de Application Programming Interfaces (APIs) y listas de APIs en registros de servicios como ProgrammableWeb. Para ello, se ha definido un modelo unificado de componentes combinables para Mashup-Driven Development (MDD) tras el análisis de repositorios de servicios de la web. El nivel de agente involucra la orquestación del descubrimiento de servicios y contenidos. En este nivel, las reglas de nivel de agente permiten especificar comportamientos para el rastreo y ejecución de servicios, lo que permite la consecución de metas de mayor nivel. Las reglas de los agentes son planes que permiten la introspección sobre los datos y servicios descubiertos, así como sobre el conocimiento presente en las reglas de descubrimiento de servicios y contenidos para anticipar contenidos y servicios por encontrar en recursos específicos de la web. Mediante la definición de planes, un agente puede ser configurado para descubrir recursos específicos. El marco de descubrimiento ha sido evaluado sobre diferentes escenarios, cada uno cubriendo distintos niveles del marco. El proyecto Contenidos a la Carta trata de la combinación de noticias de periódicos digitales, y en él el framework se ha empleado para el descubrimiento y extracción de noticias de la web. De manera análoga, en los proyectos Resulta y VulneraNET se ha llevado a cabo un descubrimiento de ideas y de conocimientos de seguridad, respectivamente. El nivel de servicio se cubre en el proyecto OMELETTE, en el que componentes combinables como servicios y widgets se descubren en repositorios de componentes de la web. El nivel de agente se aplica al rastreo de servicios y noticias en estos escenarios, mostrando cómo la descripción semántica de reglas y datos extraídos permiten proporcionar comportamientos complejos y orquestaciones de tareas en la web. Las principales contribuciones de la tesis son el marco de trabajo unificado para descubrimiento, que permite configurar agentes para realizar tareas automatizadas. Además, una ontología de extracción ha sido definida para la construcción de correspondencias y extraer información de recursos web. Asimismo, un algoritmo para la inducción de reglas de lógica de primer orden se ha definido para la construcción y el mantenimiento de estas correspondencias a partir de la información visual de recursos web. Adicionalmente, se ha definido un modelo común y unificado para el descubrimiento de servicios que permite la compartición de descripciones de servicios. Como trabajos futuros se considera la extensión del sondeo de servicios, clasificación de recursos, extensión de la ontología de extracción y la construcción de una base de reglas de descubrimiento.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper shows the influence of the semantic content of urban sounds in the subjective evaluation of outer spaces. The study is based on the analysis conducted in three neighboring and integrated urban spaces with a different form of social ownership in the city of Cordoba, Argentina. It shows that the type of sound source present at each site influence, by its semantic content, in the user´s identification and permanence in the place. The noise present in a soundscape is able to have a high semantic content, and therefore the sound has a particular meaning for the perceiver. Every particular social group influences the production of their own sounds and how they perceive them. This allows to consider the sound as one of the factors that define the sense of "place" or "no place" of a certain urban space. Evidently the sounds, and their ability to evoke and characterize the environment, cannot be ignored in the construction and recovery of anthropological sites. This urban culture is unique and specific to every society. Thepublic spaces, with their soundscape, are part of the construction of the urban identity of a city. It is shown that for identical general sound levels present in each of the spaces, the level of annoyance or discomfort, in relation to the subjective acoustic quality, is different. This is the result of the influence of semantic content of the sounds present in each urban space. Coinciding with other similar research, the level of discomfort or annoyance decreases as the presence of natural sounds such as water, the wind in the trees or the birds singing increases, even when the objective values of noise level of natural sounds are higher.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Most of the existing open-source search engines, utilize keyword or tf-idf based techniques to find relevant documents and web pages relative to an input query. Although these methods, with the help of a page rank or knowledge graphs, proved to be effective in some cases, they often fail to retrieve relevant instances for more complicated queries that would require a semantic understanding to be exploited. In this Thesis, a self-supervised information retrieval system based on transformers is employed to build a semantic search engine over the library of Gruppo Maggioli company. Semantic search or search with meaning can refer to an understanding of the query, instead of simply finding words matches and, in general, it represents knowledge in a way suitable for retrieval. We chose to investigate a new self-supervised strategy to handle the training of unlabeled data based on the creation of pairs of ’artificial’ queries and the respective positive passages. We claim that by removing the reliance on labeled data, we may use the large volume of unlabeled material on the web without being limited to languages or domains where labeled data is abundant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent advances in the control of molecular engineering architectures have allowed unprecedented ability of molecular recognition in biosensing, with a promising impact for clinical diagnosis and environment control. The availability of large amounts of data from electrical, optical, or electrochemical measurements requires, however, sophisticated data treatment in order to optimize sensing performance. In this study, we show how an information visualization system based on projections, referred to as Projection Explorer (PEx), can be used to achieve high performance for biosensors made with nanostructured films containing immobilized antigens. As a proof of concept, various visualizations were obtained with impedance spectroscopy data from an array of sensors whose electrical response could be specific toward a given antibody (analyte) owing to molecular recognition processes. In addition to discussing the distinct methods for projection and normalization of the data, we demonstrate that an excellent distinction can be made between real samples tested positive for Chagas disease and Leishmaniasis, which could not be achieved with conventional statistical methods. Such high performance probably arose from the possibility of treating the data in the whole frequency range. Through a systematic analysis, it was inferred that Sammon`s mapping with standardization to normalize the data gives the best results, where distinction could be made of blood serum samples containing 10(-7) mg/mL of the antibody. The method inherent in PEx and the procedures for analyzing the impedance data are entirely generic and can be extended to optimize any type of sensor or biosensor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Language relating to disability in the public arena has been a sensitive issue in Japan as elsewhere. Since the 1970s and 80s, major media organisations have replaced words considered derogatory with more acceptable equivalents; laws, statutes and other legal documents have likewise been revised. This article examines how the language used to portray people with disabilities has changed, how the changes came about and how they were received. The debate has largely been played out in four public spaces, which to some extent intersect and overlap: the media (both print and visual), the laws, literature and, increasingly now, the Internet. I argue that while the laws were rewritten primarily as the result of external international trends, such as the International Year of Disabled Persons, disability groups achieved media compliance mainly by exploiting the keen desire of Japanese media organisations to avoid public embarrassment resulting from vocal protests over infractions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To comply with natural gas demand growth patterns and Europe´s import dependency, the gas industry needs to organize an efficient upstream infrastructure. The best location of Gas Supply Units – GSUs and the alternative transportation mode – by phisical or virtual pipelines, are the key of a successful industry. In this work we study the optimal location of GSUs, as well as determining the most efficient allocation from gas loads to sources, selecting the best transportation mode, observing specific technical restrictions and minimizing system total costs. For the location of GSUs on system we use the P-median problem, for assigning gas demands nodes to source facilities we use the classical transportation problem. The developed model is an optimisation-based approach, based on a Lagrangean heuristic, using Lagrangean relaxation for P-median problems – Simple Lagrangean Heuristic. The solution of this heuristic can be improved by adding a local search procedure - the Lagrangean Reallocation Heuristic. These two heuristics, Simple Lagrangean and Lagrangean Reallocation, were tested on a realistic network - the primary Iberian natural gas network, organized with 65 nodes, connected by physical and virtual pipelines. Computational results are presented for both approaches, showing the location gas sources and allocation loads arrangement, system total costs and gas transportation mode.