965 resultados para Natural language processing (Computer science)
Resumo:
El proyecto ATTOS centra su actividad en el estudio y desarrollo de técnicas de análisis de opiniones, enfocado a proporcionar toda la información necesaria para que una empresa o una institución pueda tomar decisiones estratégicas en función a la imagen que la sociedad tiene sobre esa empresa, producto o servicio. El objetivo último del proyecto es la interpretación automática de estas opiniones, posibilitando así su posterior explotación. Para ello se estudian parámetros tales como la intensidad de la opinión, ubicación geográfica y perfil de usuario, entre otros factores, para facilitar la toma de decisiones. El objetivo general del proyecto se centra en el estudio, desarrollo y experimentación de técnicas, recursos y sistemas basados en Tecnologías del Lenguaje Humano (TLH), para conformar una plataforma de monitorización de la Web 2.0 que genere información sobre tendencias de opinión relacionadas con un tema.
Resumo:
"June, 1971."
Resumo:
Existe um problema de representação em processamento de linguagem natural, pois uma vez que o modelo tradicional de bag-of-words representa os documentos e as palavras em uma unica matriz, esta tende a ser completamente esparsa. Para lidar com este problema, surgiram alguns métodos que são capazes de representar as palavras utilizando uma representação distribuída, em um espaço de dimensão menor e mais compacto, inclusive tendo a propriedade de relacionar palavras de forma semântica. Este trabalho tem como objetivo utilizar um conjunto de documentos obtido através do projeto Media Cloud Brasil para aplicar o modelo skip-gram em busca de explorar relações e encontrar padrões que facilitem na compreensão do conteúdo.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
With this paper, we propose a set of techniques to largely automate the process of KA, by using technologies based on Information Extraction (IE) , Information Retrieval and Natural Language Processing. We aim to reduce all the impeding factors mention above and thereby contribute to the wider utility of the knowledge management tools. In particular we intend to reduce the introspection of knowledge engineers or the extended elicitations of knowledge from experts by extensive textual analysis using a variety of methods and tools, as texts are largely available and in them - we believe - lies most of an organization's memory.
Resumo:
The fundamental failure of current approaches to ontology learning is to view it as single pipeline with one or more specific inputs and a single static output. In this paper, we present a novel approach to ontology learning which takes an iterative view of knowledge acquisition for ontologies. Our approach is founded on three open-ended resources: a set of texts, a set of learning patterns and a set of ontological triples, and the system seeks to maintain these in equilibrium. As events occur which disturb this equilibrium, actions are triggered to re-establish a balance between the resources. We present a gold standard based evaluation of the final output of the system, the intermediate output showing the iterative process and a comparison of performance using different seed input. The results are comparable to existing performance in the literature.
Resumo:
The use of ontologies as representations of knowledge is widespread but their construction, until recently, has been entirely manual. We argue in this paper for the use of text corpora and automated natural language processing methods for the construction of ontologies. We delineate the challenges and present criteria for the selection of appropriate methods. We distinguish three ma jor steps in ontology building: associating terms, constructing hierarchies and labelling relations. A number of methods are presented for these purposes but we conclude that the issue of data-sparsity still is a ma jor challenge. We argue for the use of resources external tot he domain specific corpus.
Resumo:
Yorick Wilks is a central figure in the fields of Natural Language Processing and Artificial Intelligence. His influence extends to many areas and includes contributions to Machines Translation, word sense disambiguation, dialogue modeling and Information Extraction. This book celebrates the work of Yorick Wilks in the form of a selection of his papers which are intended to reflect the range and depth of his work. The volume accompanies a Festschrift which celebrates his contribution to the fields of Computational Linguistics and Artificial Intelligence. The papers include early work carried out at Cambridge University, descriptions of groundbreaking work on Machine Translation and Preference Semantics as well as more recent works on belief modeling and computational semantics. The selected papers reflect Yorick’s contribution to both practical and theoretical aspects of automatic language processing.
Resumo:
Corpora—large collections of written and/or spoken text stored and accessed electronically—provide the means of investigating language that is of growing importance academically and professionally. Corpora are now routinely used in the following fields: •the production of dictionaries and other reference materials; •the development of aids to translation; •language teaching materials; •the investigation of ideologies and cultural assumptions; •natural language processing; and •the investigation of all aspects of linguistic behaviour, including vocabulary, grammar and pragmatics.
Resumo:
We show a new method for term extraction from a domain relevant corpus using natural language processing for the purposes of semi-automatic ontology learning. Literature shows that topical words occur in bursts. We find that the ranking of extracted terms is insensitive to the choice of population model, but calculating frequencies relative to the burst size rather than the document length in words yields significantly different results.
Resumo:
Social streams have proven to be the mostup-to-date and inclusive information on cur-rent events. In this paper we propose a novelprobabilistic modelling framework, called violence detection model (VDM), which enables the identification of text containing violent content and extraction of violence-related topics over social media data. The proposed VDM model does not require any labeled corpora for training, instead, it only needs the in-corporation of word prior knowledge which captures whether a word indicates violence or not. We propose a novel approach of deriving word prior knowledge using the relative entropy measurement of words based on the in-tuition that low entropy words are indicative of semantically coherent topics and therefore more informative, while high entropy words indicates words whose usage is more topical diverse and therefore less informative. Our proposed VDM model has been evaluated on the TREC Microblog 2011 dataset to identify topics related to violence. Experimental results show that deriving word priors using our proposed relative entropy method is more effective than the widely-used information gain method. Moreover, VDM gives higher violence classification results and produces more coherent violence-related topics compared toa few competitive baselines.
Resumo:
Yorick Wilks is a central figure in the fields of Natural Language Processing and Artificial Intelligence. His influence has extends to many areas of these fields and includes contributions to Machine Translation, word sense disambiguation, dialogue modeling and Information Extraction.This book celebrates the work of Yorick Wilks from the perspective of his peers. It consists of original chapters each of which analyses an aspect of his work and links it to current thinking in that area. His work has spanned over four decades but is shown to be pertinent to recent developments in language processing such as the Semantic Web.This volume forms a two-part set together with Words and Intelligence I, Selected Works by Yorick Wilks, by the same editors.
Resumo:
Corpora—large collections of written and/or spoken text stored and accessed electronically—provide the means of investigating language that is of growing importance academically and professionally. Corpora are now routinely used in the following fields: The production of dictionaries and other reference materials; The development of aids to translation; Language teaching materials; The investigation of ideologies and cultural assumptions; Natural language processing; and The investigation of all aspects of linguistic behaviour, including vocabulary, grammar and pragmatics.
Resumo:
The Universal Networking Language (UNL) is an interlingua designed to be the base of several natural language processing systems aiming to support multilinguality in internet. One of the main components of the language is the dictionary of Universal Words (UWs), which links the vocabularies of the different languages involved in the project. As any NLP system, coverage and accuracy in its lexical resources are crucial for the development of the system. In this paper, the authors describes how a large coverage UWs dictionary was automatically created, based on an existent and well known resource like the English WordNet. Other aspects like implementation details and the evaluation of the final UW set are also depicted.
Resumo:
Modern technology has moved on and completely changed the way that people can use the telephone or mobile to dialogue with information held on computers. Well developed “written speech analysis” does not work with “verbal speech”. The main purpose of our article is, firstly, to highlights the problems and, secondly, to shows the possible ways to solve these problems.