1000 resultados para Native Special Jurisdiction
Resumo:
Weekly newsletter for Center For Acute Disease Epidemiology of Iowa Department of Public Health. SPECIAL ALERT
Resumo:
Report on a special investigation of the football program at Lincoln High School within the Des Moines Independent Community School District for the period May 30, 2003 through October 31, 2012
Resumo:
Molecular phylogeny of soricid shrews (Soricidae, Eulipotyphla, Mammalia) based on 1140 bp mitochondrial cytochrome b gene (cytb) sequences was inferred by the maximum likelihood (ML) method. All 13 genera of extant Soricinae and two genera of Crocidurinae were included in the analyses. Anourosorex was phylogenetically distant from the main groupings within Soricinae and Crocidurinae in the ML tree. Thus, it could not be determined to which subfamily Anourosorex should be assigned: Soricinae, Crocidurinae or a new subfamily. Soricinae (excluding Anourosorex) should be divided into four tribes: Neomyini, Notiosoricini, Soricini and Blarinini. However, monophyly of Blarinini was not robust in the present data set. Also, branching orders among tribes of Soricinae and those among genera of Neomyini could not be determined because of insufficient phylogenetic information of the cytb sequences. For water shrews of Neomyini (Chimarrogale, Nectogale and Neomys), monophyly of Neomys and the Chimarrogale-Nectogale group could not be verified, which implies the possibility of multiple origins for the semi-aquatic mode of living among taxa within Neomyini. Episoriculus may contain several separate genera. Blarinella was included in Blarinini not Soricini, based on the cytb sequences, but the confidence level was rather low; hence more phylogenetic information is needed to determine its phylogenetic position. Furthermore, some specific problems of taxonomy of soricid shrews were clarified, for example phylogeny of local populations of Notiosorex crawfordi, Chimarrogale himalayica and Crocidura attenuata.
Resumo:
Addendum to a report on a special investigation of the Iowa Department of Transportation for the period January 29, 1994 through June 30, 2013
Resumo:
Selostus: Typpilannoituksen ja kasvunsääteiden vaikutukset kevätviljojen ja rypsin satoon sekä typen käyttöön
Resumo:
Report on a special investigation of Remsen-Union Family Connections for the period July 1, 2011 through October 31, 2012
Resumo:
Report on a special investigation of the City of Sloan for the period May 19, 2009 through March 31, 2013
Resumo:
Special investigation of the Garner Volunteer Ambulance Service for the period July 1, 2011 through June 30, 2012
Resumo:
Recent data on the AFM studies of nucleoprotein complexes of different types are reviewed in this paper. The first section describes the progress in the sample preparation methods for AFM studies of nucleic acids and nucleoprotein complexes. The second part of this paper reviews AFM data on studies of complexes of DNA with regulatory proteins. These studies include two different types of DNA distortion induced by proteins binding: local bending of DNA at sites of protein binding and formation of large loops due to protein-protein interactions between molecules bound to distant sites along the DNA molecules (DNA looping). The prospects for use of AFM for physical mapping of genomes are discussed in this section as well. The third part of the paper reviews data on studies of complexes of DNA with non-sequence specific binding proteins. Special emphasis is given to studies of chromatin which have resulted in progress in the understanding of structure of native chromatin fiber. In this section, novel data on AFM studies of RecA-DNA filaments and complexes of dsRNA with the dsRNA-specific protein p25 are also presented. Discussion of the substrate preparation procedures in relation to the AFM studies of nucleoprotein complexes is given in the final section.
Resumo:
Report on a special investigation of the City of Riverside for the period July 1, 2006 through December 31, 2012
Resumo:
Moissanite (natural SiC) has been recovered from podiform chromitites of several ophiolite complexes, including the Luobusa and Donqiao ophiolites in Tibet, the Semail ophiolite in Oman and the United Arab Emirates, and the Ray-Iz ophiolite of the Polar Urals, Russia. Taking these new occurrences with the numerous earlier reports of moissanite in diamondiferous kimberlites leads to the conclusion that natural SiC is a widespread mineral in the Earth's mantle, which implies at least locally extremely low redox conditions. The ophiolite moissanite grains are mostly fragments (20 to 150 mu m) with one or more crystal faces, but some euhedral hexagonal grains have also been recovered. Twinned crystals are common in chromitites from the Luobusa ophiolite. The moissanite is rarely colorless, more commonly light bluish-gray to blue or green. Many grains contain inclusions of native Si and Fe-Si alloys (FeSi(2), Fe(3)Si(7)). Secondary ion mass spectrometric (SIMS) analysis shows that the ophiolite-hosted moissanite has a distinctive (13)C-depleted isotopic composition (delta(13)C from -18 to -35 parts per thousand, n=36), much lighter than the main carbon reservoir in the upper mantle (delta(13)C near -5 parts per thousand). The compiled data from moissanite from kimberlites and other mantle settings share the characteristic of strongly (13)C-depleted isotopic composition. This suggests that moissanite originates from a separate carbon reservoir in the mantle or that its formation involved strong isotopic fractionation. The degree of fractionation needed to produce the observed moissanite compositions from the main C-reservoir would be unrealistically large at the high temperatures required for moissanite formation. Subduction of biogenic carbonaceous material could potentially satisfy both the unusual isotopic and redox constraints on moissanite formation, but this material would need to stay chemically isolated from the upper mantle until it reached the high-T stability field of moissanite. The origin of moissanite in the mantle is still unsolved, but all evidence from the upper mantle indicates that it cannot have formed there, barring special and local redox conditions. We suggest, alternatively, that moissanite may have formed in the lower mantle, where the existence of (13)C-depleted carbon is strongly supported by studies of extraterrestrial carbon (Mars, Moon, meteorites). (C) 2009 Elsevier B. V. All rights reserved.